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1. Research Gbjectives

The researchi ronducted under this gran: is a continaation of a leng-term re-
search effort devoted 10 the study of vzrious aspects of direct and inverse elec-
tzomagnelic scattering previously supported hy AFOSR. The general goal of the
program cont:nues 1o be the establishment of a firm mathematical foundation ond
the developinent of algorithims based on such: a foundaticn :»2 which boundary and
doma:n parametess are cither to be recovered fiom suvattering or radiation data or
used as controls to optinize various functionals of the scattered or radiated fields.
Such parameters inciude the shape of the boundary itself, functions defined on the
boundary such as impedance, generalized impedance and generalized resistivity, as
well a8 domain parameters such as conductivity and refractive index. The program,
as descnbed in the original proposal, is focussed on three speaific areas of investiza-
tion: multicriteria optimization, generalized impedance boundary conditions, and

inverse scattering techniques.

We summarize the nature of each of the particular problem areas and report
on work done and in progress in each of the next four sections. In additic.. to this
work. we have begun the writing of 8 monograph devoted to optimization methods in
antenna theory which will be devoted, to a large extent, to the systematic exposition
of the theory and computational results obtained with the support of several AFCSR

grants. This monograph is being written in collaboration with Professor A. Kirsch

1




of the Universitat Erlangen-Niirnberg in Germany.

2. Research Accomplishments and Current Status
2.1. Multicriteria Optimization

Many problems of applied interest in both the optimization of radiated fields
and the identification of targets may be viewed as involving several performance
criteria, any one of which may be taken as the prirnary cost functional which is to
be optimized. A variety of such performance is evidenced in antenna problems as
described in [3.2]' Other desirable characteristics, represented as functionals, are
most often treaied as constrainis to be satisfed by an optimal solution, and some

multiplier technique is used to produce an unconstrained problem.

However, the designation of one primary cost functional and the reiegation of
others to the status of constraints, is somewhat arbitrary. Indeed. & more direct
approach is to consider such problems as multicriteria problems of optimization.
To our knowledge, our use of multicriteria techniques is new in the fields of inverse
scattering and control in electromagnetics. The ideas were first presented to the

electromagnetic community at the Boulder URST Meeting in 1892 (5.5].

We have prepared two manuscripts on this subject each of which includes both
theoretical analysis as well as computational results. The actual computation of
the manifold of Pareto optimal points gives the design engineer a range of choices
making the trade—offs between different optimal choices explicit. The {i1st paper

describing these results, [3.5], Multicriteria Optimization in Antenna Design ap-

1 Numbers in parenthesis refer to papers and presentations listed in sections 3 and §.
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peared in 1992. A second paper [5.12] Multicriteria Optimization in Arrays was
presenied at the JINA 92 meeting in Nice, France in November, 1992. This paper
addresses the use of such methods for antenna arrays and compares these results
with the well-known Dolph~Tchebyscheff result. We presented these results at a
seminar at Rome Laboratories, Hanscom AFB in January, 1993. At that time, it
became clear that an array problem previously considered by R.A. Shore of Rome
Laboratories could also be treated by multicriteria methods. It was agreeéi that we
wouid collaborate on the application of the multicriteria approach to this problem.

This work is ongoing.

The work described above includes numerical computations for problems in-
volving both arrays and conformal antennas. Related to these problems is that of
maximizing the powers in a preassigned sector of the far field. We considered this
problem several years ago. In the present grant period, we returned to that prot-
lern and, in collaboration with B. Vainberg of the University of North Carolina at
Charlottesville, we have been able to use asymptotic methods to characterize the
optimal surface current in terms of a graph norm for the Neumann-to-Dirichlet
operator. In doing so, we get an ezplicif representation for this operator. These

results were prasented [5.20] and will appear in {3.12].

2.2. Generalized Boundary Conditions

Under the present grant. we initiated a study of the well-posadness of resis-
tive and conductive boundayy velue problems for the acoustic case. Under the
present grant, we have completed a paper The Conductive Boundary Condition for

Mazwell’s Equationsin coilaboration with A. Kirsch [3.4]. The resulis were reported
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at the IEEE/APS URSI International Symposium in Chicago in July, 1992, 3.8].

These conditions, intended to model thin layer behavior, are neither pure
boundary conditions nor full transmission conditions, and involve using variable
resistivity or conductivity to model such layers. An alternative is the use of higher
order or generalized impedance conditions i.e., boundary conditions which involve

differential operators of higher than the order of the differential equation.

In collaboration with S. PrzeZdsiecki of the Polish Academy of Sciences, we
attempted a rigorous derivation of such conditions for the electromagnetic scattering
in the case of a plane stratified medium. Using Fourier transform techniques the
problem was transformed into one involving a set of transmission line equations. A
preliminary version of this work was presented in [5.6] but some detail: of this work

remain to be clarified before a manuscript can be completed.

2.3. Inverse Problems

We have pursued three lines of research on this topic. The first is the devel-
opment of an efficient computer zlgorithm for a variant of the shape identification
method based on complete families of solutions which we developed under the pre-
vious grant. Work with J. Jiang, a postdoctoral fellow, has yielded excellent results
for the inverse Dirichlet and Neumann problems in the acoustic case. The algo-
rithm is able to return shapes from synthetic data using, respectively, only one or
two incident fields. The error is comparable to that occurring using other recently
developed methods, but has the great advantage of being able to provide the re-
constructions with significantly less data. Re.ults were presented at the APS/URSI

International Symposium in Ann Arbor in June 1993 [5.13] and a paper describing
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the numerical results is currently in preparation.

A second line of attack on the shape identification problem again involved the
use of complete families but instead of simultaneously reconstructing the shape and
the solution of a scattering problem for particular boundary data, in this approach
we attempt to reconstruct the shape and the Green’s function for a given class of
boundary conditions, viz. Dirichlet, Neumann or Robin. One advantage of this
approach, in contrast to almost ali other shape reconstruction methods, is that it
readily leads to an algorithm even when scattered field data may only be measured
in the backscattering direction. Preliminary results have been reported in [5.11] and
[5.16) and a paper describing the method is under preparation. However as yet no

numerical experiments have been performed to test the feasibility of the approach.

The third approach we followed concerned the iterative technique developed
under AFOSR support that has proven successful in parameter identification prob-
lems; specifically reconstructing complex indices of refraction of two dimensional
objects from measurements of the fields scattered when the object is illuminated
by known sources. Essentially, the method involves casting the problem as an op-
timization problem in which the cost functional consists of two terms, one is the
defect in matching measured data with fields due to a particular index of refrac-
tion and the second is the state equation, a set of tegral equations in which the
index appears and which the flelds must satisfy. Thlere are essentially two types
of unknown functions, the index of refraction and the total field for each excita-
tion. Each of these functions is constructed iteratively using linear updating, the

nonlinear nature of their interrelationship being. nevertheless, retained.
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Previous versions of this algorithm led to an empirically determined limit of
reconstructibility of kd|xma:| £ 67 where k is the wive number, d a characteristic
diameter of the scatterer, and |xmaz| is the largest contrast that can be recon-

structed. No a prior: information about the scatterer was used. This work is

described in [3.8], [3.9], [5.1], [5.2] [5.3] and [5.10).

Under the current grant, however, we exploited the fact that in most problems
of interest, the imaginary part of the contrast is non-negative. Incorporating this
constraint into the algorithm resulted in a remarkable improvement in the limit of
reconstructibility. In fact, using the fact that for extremely good conductors the
contrast is essentially large positive imaginary, we successfully reconstructed the
boundary of a perfect conductor. In a dramatic demonstration of the efficacy of
the method, experimental data provided by Rome Laboratories, Hanscom AFB for
a perfectly conducting body was n1zcd in our algorithm in a “blind” reconstruction.
That is, the actual gecinetry of the object was not provided, only the experimen-
tal scattering data. The algorithm successfully reconstructed the unknown target.
Parts of these results have been reported in invited talks in the British Applied Math
Colloquium [5.15], the XXIV General Assernbly of URSI [5.17) and the Mathemat-
ics Forschung Institut, Oberwolfach [5.18]. A paper describing the modifications
of the algorithm, Two Dimensional Location and Shape Reconstruction [3.10] has
appeared in Radio Science and another paper describing the blind reconstruciion
has been completed [3.13]. The experimental work at Rome Laboratories is be-

ing done by Robert McGahan and Marc Coté while the theoretical and numerical

work is being done in collaboration with Peter van den Berg of Delft University of

Technology in the Netherlands.




2.4. Related Work

Work in the three main problem areas described in sections 2.1 - 2.3, was
accompanied by some significant related activity which is briefly summarized in

this section.

In addition to the applications of optimization methods in antenna problems
it was shown that a similar approach could be successfully followed in a class of
free surface hydrodynamical problems [3.1], [3.3]. This included development of
a constructive method tor finding the hull design which optimizes hydrodynamic

performance characteristics such as drag and added mass.

The iterative solution of the inverse problems, which has become a major and
productive component of the research program, was inspired by previous work on
iterative solutions of integral formulations of direct scattering problems. These iter-
ative methods were described in [5.9] and a comprehensive review of these methods
in electromagnetics was invited for inclusion in the 1990-1992 Review of Radio
Science [3.6]). In addition, uniquely solvable integral equations for electromagnetic
scattering from indentations in plane screens were devised [3.7], [5.4). These equa-
tions have application to problems involving small cavities in otherwise smooth
surfaces. The subject of small scatterers was also pursued in other ways. Pre-
viously obtained results on applications of the Kelvin inversion to low frequency
scatte.ring were used to obtain the solution of a canonical low frequency problem,
scattering by a concave object [5.7). The static image theory which attempts to
characterize scattered fields by equivalent image sources producing them was ex-

tended to the dielectric sphere [3.15], [5.14]. Finally the complete characterization
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of the low frequency ‘expansion” of the scattered field in two dimensions, when

the field is no longer analytic in frequency, was accomplished for arbitrarily shaped

scatterers and, in fact, general second order elliptic equations {3.11].

3.

'Publications supported under AFOSR Grant No. 91-0277 (copies

included in the Appendix)

1.

10.

11

Recent Developments in Floating Body Problems, T. S. Angell, G. C. Hsaio
and R. E. Kleinman, in Mathematical Approaches 1n Hydroedynamies, Touvia
Miloh, ed., SIAM Publications, Phila., 141-152, 1991.

. Antenna Control and Optimization, T. S. Angell, A. Kirsch and R. E. Klein-

man, Proc. IEEE, 79(1), 1559-1568, 1991 (invited paper).

A Constructive Method for Shape Optimization: A Problem in Hydromechan-
ics, T. S. Angell and R. E. Kleinman, IM4 Journ. Appl. Math., 47, 265-281,
1991.

. The Conductive Boundary Condition for Maxwell's Equations, T. S. Angell

and A. Kirsch, STAM J. Appl. Math, 52, 1597-1610, 1992.

. Multicriteria Optimization in Antenna Design, T. S. Angell and A. Kirsch,

Math Methods in the Appl. Sciences, 15, 647-660, 1992.

Iterative Methods for Radio Wave Problems, R. E. Kleinman and P. M. van
den Berg, Review of Radio Science 1990-1992, W. Ross Stone, ed., Oxford
University Press, 1993, 57-74.

Electromagnetic Scattering by Indented Screens, J. 5. Asvestas and R. E. Klein-
man, JEEE AP 42, 22-30, 1994.

A Modified Gradient Method for Two-Dimensional Problems in Tomography,
R. E. Kleinman and P. M. van den Berg, J. Comp. and Appl. Math, 42, 1992,
17-35.

An Extended Range Modified Gradient Technique for Profile Inversion, R. E.
Kleinman and P. M. van den Berg, Radio Science, 28, 1993, 877-884.

Two Dimensional Location and Shape Reconstruction, R. E. Kleinman and P.
M. van den Berg, Radio Science 29, 11537-1169, 1994.

Full Low-Frequency Asymptotic Expansion for Elliptic Equations of Second
Order, R. E. Kleinman and B. Vainberg, in Mathematical and Numerical As-
pects of Wave Propagation, R. Kleinman, et al., eds., SIAM, Philadelphia, PA,
1993, 296-301.




12. Asymptotic Approximation of Optimal Solutions of an Acoustic Radiation
Problem, T. S. Angell, R. E. Kleinman, and B. Vainberg, in Inverse Scat-
tering and Potential Problens in Mathematical Physics, R. E. Kleinman, R.
Kress and E. Martensen, eds. Peter Lang, Frankfurt (in press).

13. Blind Shape Reconstruction from Experimental Data, P. M. van den Berg, M.
G. Coté and R. E. Kleinman, submitted to JEEE-AP.

i 14. Modified Green's Functions and Obstacle Reconstruction, R. E. Kleinman and
- G. F. Roach, in preparation.

13. Low Frequency Image Theory for the Dielectric Sphere, I. V. Lindell, J. C- E.
Sten and R. E. Kleinman, J. Electromagnetic Waves and Applics., 8, 295-313,
1994.

16. Full Low-Frequency Asymptotic Expansion for Second-Order Elliptic Equa-
tions in Two Dimensions, R. E. Kleinman and B. Vainberg, Math. Methods in
the Appl. Sci., (to appear).

4. Research Personnel

T. E. Angell - Principal Investigator

R. E. Kleinman - Principal Investigator

P. M. van den Berg - Scientific Investigator
Xinming Jiang — Post Doctoral Investigator
Wen Lixin - Graduate Student

Note that Dr. Jiang and Ms. Wen received no direct support under the grant

but did work on grant related projects.

5a. Presentations supported under AFOSR Grant No. 91-0277

1. Two-Dimensional Profile Reconstruction, R. E. Kleinman and P. M. van den
Berg, North American Radio Science Meeting, URSI/IEEE-APS, London, On-
tario, June 1991.

2. Profile Inversion for Two Dimensional Scatterers, R. E. Kleinman and P. M.
van den Berg, PIERS Symposium, Cambridge, MA, July 1991 (invited talk).
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10.

11.

12.

13.

14,

15.

16.

Iterative Methods for Electromagnetic Profile Inversion, R. E. Kleinman, X.
Jiang and P. M. van den Berg, ICTAM, Washington, D.C., July 1991.

The Far Field Scattered by Indented Screens, J. S. Asvestas and R. E. Klein-
man, National Radio Science Meeting, Boulder, CO, Jan. 1991.

. A Novel Approach to Antenna Optimization, T. S. Angell, A. Kirsch and R.

E. Kleinman, National Radio Science Meeting, Boulder, CO, Jan. 1992.

. A Rigorous Derivation of Higher Order Boundary Conditions in Electromag-

netic Scattering, T. S. Angell, R. E. Kleinman and S. Przezdziecki, Wave Phe-
nomena 1I: Modern Theory and Applications, Edmonton, Alberta, June 1991.

. Low Frequency Electromagnetic Scattering from Non Convex Bodies, D. Gin-

tides, K. Kiriaki and R. E. Kleinman, IEEE/APS-URSI International Sympo-
sium, Chicago, IL, July 1992.

. Conductive Problems in Scattering with Maxwell’s Equation, T. S. Angell,

A. Kirsch and R. E. Kleinman, JEEE/APS-URSI International Symposium,
Chicago, IL, July 1992.

. Iterative Methods for Intermediate Frequencies, R. E. Kleinman and P. M. van

den Berg, IEEE/APS-URSI International Symposium, Chicago, IL, July 1992
(invited paper).

An Extended Range Modified Gradient Technique for Profile Inversion, R. E.
Kleinman 2nd P. M. van den Berg, URSI International Symposium on Electro-
magnetic Theory, Sydney, Australia, August 1992.

Obstacle Reconstruction from Back Scattered Data, R. E. Kleinman and G.
F. Roach, URSI International Symposium on Electromagnetic Theory, Sydney,
Australia, August 1992.

Multicriteria Optimization in Arrays, T. S. Angell, R. E. Kleinman and A.
Kirsch, Proceedings of JINA 92 Congress, Nice, France, 1992.

A New Inversion Technique for Shape Reconstruction, T. S. Angell, Xinming
Jiang and R. E. Kleinman, URSI Radio Science Meeting, Ann Arbor, MI, June
1993.

Low Frequency Image Theory for the Dielectric Sphere, I.V. Lindell and R. E.
Kleinman, National Radio Science Meeting, Boulder, CO, Jan. 1992.

Modified Gradient Techniques for Profile Inversion, R. E. Kleinman, P. M. van
den Berg, British Applied Math Colloquium, Glasgow, Scotland, April, 1993.

Modified Green’s Functions and Obstacle Reconstruction, G. F. Roach and

R. E. Kleinman, British Applied Math Colloquium, Glasgow. Scotland, April
1993.
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17. Profile Inversion by Simultaneous Error Reduction, R. E. Klcinman and P. M.
van den Berg, XX1Vth General Assembly of URSI, Kyoto, Japan, August 1993.

18. Reconstruction of the Location, Shape, and Composition of a Scattering Ob-

jest, P. M. van den Berg and R. E. Kleinman, Oberwolfach Conference, Meth-
oden und Verfahren der Mathematischen Physik, Dec. 1993.

19. Full Low-Frequency Asymptctic Enpansion tor Elliptic Equations of Second
Order, R. E. Kleinman and B. Vainberg, SIAM-INRIA Conference on Mathe-
matical and Numerical Asjects of Wave Propagation, Newark, DE June 1993.

20. Asymptotic Approxiration of Optimal Solutiors of an Accustic Raliation
Problem, T. S. Angell, R. E. Kleinmar and B. Vainberg, CGberwolfach Confer-
ence. Methoden und Verfahren der Mathematischen Physik, December 1993.

21. New Approaches to Numerical Solutions of Integral Equations, R. E. Kleinman,

Internatioual Conference on Applied and Industrial Mathematics, Linkoping,
Sweden, June 1294.

5b. Interactions with other Laboratories

Rome Laboratory, Hanscom AFB: Collaboration with personnel was initiated
and 1s ongoing in two areas. With R. A. Shore there is a project on applying multi-
criteria optimization methods to a class of antenna problems previously treated by
other methods. With R. V. McGahan and M. G. Coté there is a project devoted
to using experimental microwave scattering data as the input in inverse scattering
algorithms. This collaboration has resulted in one joint paper submitted for publica-
tion and a cooperative effort to organize a worl:shop on inversion using experimental

data.

Laboratory for Electromagnetic Research, Delft University of Technology, The
Netherlands: Peter van den Berg of that Laboratory has played a key role in de-
veloping robust inversion algorithm and has collaborated on 13 of the papers and

presentations listed in Sections 3 and 5a.
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Institute for Applied Mathematics, University of Frlangen, Nurenberg, Ger-
many: Andreas Kirsch of the Institute has collaborated on the work on resistive
boundary conditions and is currently involved in a joint book project cn optimiza-

tion methods in antenna theory.

Laberatory for Signals and Systems, Nat’>nal Center for Scientific Research
(CNRS), France: Collaboration with D. Lesselier and B. Duchene of that Labora-
tory has begun on extending inversion methods developed under the grant to more
complicated problems such as detecting and identifying objects buried in a halfspace

from scattering data collected above the half space.

Electronics Laboratory, University of Nice, Sophia Antipolis: Collaboration
with Christian Pichot on computing Newton-Kantorovich and modified gradient

methods for inverse scattering.

6. Discoveries inventions or patent disclosures

There have been no patent applications or inventions under the grant. The
research results reported in Sections 3 and Sa are all in their own way discoveries.
Perhaps the most striking of these was the success of our modified gradient algorithm
in reconstructing the shape and location of an object from experimental scattering

data in a “blind” test as described in [3.14].
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ia: Msthemsticai Approacnes in Hydrodyuamics,
- . Touvia Milon, ed., SIAM Publicatioms,
?hia., 199).

Chapter 10

Recent Developments in Floating
Body Problems

T. S. Angell, G. C. Hsiao, aad R. E. Kleinman

10.1. Introduction.

In this paper we outline some recent developments in the problem of ¥ body floating
on & linearited free surface subjsct to a time harmonic excitivg force. This prob-
lem was well koown even before Fritz John [11] derived & Green's function satisflying
the linearized free surface condition and used that function to prove existence and
uniqueness of solutions using integral equation techniques. John foliowed a standard
approach to boundary value problems. First he proved uniqueness, that is there was
at most one solution of the boundary value ptoblem. Thea he formulated an inte
gral equation whose solutions lead, through an integral representation, to a solution
.. of the boundary value problem, which, since only one was possible, was the unique
* solution. The existence of a unique solution of the integral equation was established ~ -
using Fredholm theory. John recognized the existence of “irrcgular frequencies”, dis-
crete resl values of the wave number for which this integral equation was not uniquely
solvable and he was forced to adopt a more complicated method explicitly involving
the eigenfunctions for pruving existence and uniqueneus for these anomolous values of
the wave number. The probiem of formulating uniqusly solvable integral equations for
all frequencies, suitable for numerical solu.ion, has occupied a central position in free
surface hydrodynamics for decades. In order to apply the results of potential theory,
John made & number of geometric assumptions on the shape of the ship hull. These
. essentially reduced to requiring that the closed surface formed by a ship hull and its
reflection in the free surface formed a smooth (twice differentiabie) convex surface. b
" This restriction imiplies that the ship huil intersects the free surface normally and pre-
cludes discoatinuities in curvature even on the center plane. Considerable attention
has been directed toward relaxing these assumptions.
In this paper we will summarize some recent developments in a number of areas
* related to the floating body problem. Specifically we will review a number of uniquely
~solvable integral equations for non—smooth hulls, the present state of attempts to
establish iae existence of “weak” solutions, and some related optimization problems
in hull design.

10.2. Notation.

‘We will concentrate on the three dimensional finite depth case as illustrated in F.‘ig.
l. We fix-the: origin-of a cartesian coordinate system-in the water plane that is; the
continuation into the ship of the mean [ree surface so that the z—y plane consists of

14}
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the mean free surface ¢y together with the water plane cy. The fluid domain D, is
bounded by the linearized free surface c;, the wetted portion of the ship hull ¢, and
the bottom cp which is assumed flat at a depth h, that is, cg is the plane z = —A,
Let D. denote the domain bounded by ¢, and c,. We denote position vectors by
P = (2,v,2) and often also employ polar coordinates z = pcos8, y = psind in the
z-y plage.

The time harmonic three dimensional floating body problem with linearized free
surface condition is usually formulated in terms of a classical boundary value problem
for the complex velocity potential ¢(p) in the fluid domain as follows. Find ¢ such

A T

L S e Ll I

that
(1a) Vie=0 ia D4,
(18) , g%:l’onc.,
(1c) %:o oncs,
—(ld). %:;-l-w:-%d;’--&-ké:O oncy,
(1e) 0% o iked = o(p=113) a3p— oo,

where k is the wave number with Im k > 0, ko is the positive real root of

(2) k = ko tavh koh ,

rE A -

where % denotes the normal derivative dir.cted into Di. The function V is the
specified boundary data on the ship hull and may be chosen so that ¢ represents any
of the possible radiation components or a diffraction potential. Mathematically it is
necessary to specify requirements on c,, the sense in which 3£ is to be taken on ¢,,
and the class of functions from, which the data V is to be chosen in order to have a
well posed (that is, uniquely solvable} boundary value problem.

We will denote by {v;} the set »f Ursell’s multiple potentizls for the three dimen-
sional finite depth case (Thorne [25], Martin (19]) which have the property of satisfying

g iy

RRCYD
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Recent Developments in Floating Body Problerns ~l43
the boundary conditions on ¢; and cy. We use the standard multi~index notation
Il=(nmj);a,m=01,2,...;j=1.2;li=n4+m<+j
and define the multipole potentials explicitly to be
i{P) = V¥am (p, 2)[j coz mb + (1 - j)sinméb] -
where

@ cosh §(z 4 h)Jm (£p)
Esinh Eh = kcosh éh

¢m(P13) = lif
0

Yam(pr2) i = 5};; j{’ EHan=1(g 4 E)eds Jmn(Ep) d€

b T et e i)
o)l Jo Esinh &l ~ kcosu &h

the contour passing below the singularity kg in the complex £-plane. The set {v} is
complete on L3(c,) provided ¢, satisfies the rather stringent smoothness conditions of
John (Martin [20]).

We may now introduce three Green's functions which figure prominestly in the in-
tegrsl equation formulstion. First is an elementary source whicu satisfies the boundary
condition on ¢y but not on ¢;:

&, n>0

N 1
2rjp—-q] 27jp-~gq|

ro(p, q) :=

where
q:=(z.y.—z—=24).

Next is a Green’s function which satisfies the boundary condition on cp and the
fre¢ surface condition on ¢;. This is the Green's function of John for which various
representations are known (e.g. Weyhausen and Laitone [28), Noblesse [21}). One such
is

o= (k3 = k3)H V(R
7(p:q) = —i E ¢ hEs )hko’ i :R) cosh kn(zp + h) cosh kn(zy + h)
nm0 "=

where

R= \/pﬁ + p} = 2pppq cos(0p — 6,)

and kn are the roots of equation (2) with non-negative reai and imaginary parts. This
Green's function has a source strength double that of 4 on ¢y and cy.
Finally we define a modified Green's function (Urseil [26]) to be

(P, 9) = (P, q) + Y arilp)u(q)
=0

where the coeficients a; are subject to two important restrictions. First the resuiting
series should be convergent for all p,q € Dy, e.g. |ai] < ;;—";‘,m,for_n.m > 0, somne

c<ooand M= 37 |u and second Im a; < 0 (note that this condition differs from

P€5+
that given by Ursell [26] only because we have chosen a different sign convention for
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Now we have three Green’s functions of ever increasing complexity beginning with
the reiatively simple 7o, the relatively complicated y,; snd the even more complicated
ya. It should be remarked that all that we are presepting here for the finite depth case
may be repeated for infivite depths where the potentials v; and the Green’s functions
+; and yu simplify considerabiy.

We csn use these Greea’s functions to define single and double layer potentials
as foliows: let ¥ dencte any one of 40, vs or v and ¢ denote any one of the surfaces
CsyCw, OF €7; let u be a function (density) defined on ¢, then define

S

e

=/7(P, qQ)u(q)dsq . peEDsUD_,
Du:= / —(Pq)u(q)dsq p€D,UD-,
K u:= E“(Q)d&z , P€c,

4

Ku ==/%(p.q)u(q)dsq , PEc,

and

_ 8 g
Nu.—gn—y'/anq(pIQ)u(Q)d’q » PE€ec.

Note that K "u is the direct value of Du on ¢ and Su may be extended to ail points on
the closure of Dy-U D.. We will append :ubunpu to indicate the particular choice
of vy and ¢, e.g.,

Se.0u :‘-'/7o(p-q)v(q) dsg .

¢,

We remark that the density u and the surface ¢ must be consistently restricted in
order for the functions given above to make sense (e.g. Kleinman {12]).

Having established this notation we may now proceed to questions of uniquely
solvable integral equations.

10.3.. Uniquely Solvable Intagral Equations.
The uniqueness theorem for the floating body problem is easily proved if Im & > 0 for
any c; for which Green's theorem is available in Dy, This is shown by John [11] (see
also Kleinman [12]). However when Im k = 0 additional restrictions on the geometry
of ¢, are needed, the essential one being that vertical rays from the free surface ¢;
intersect the ship hull at most once. However it is not necessary to require normal
intersections at the free surface (Kuznetsov and Maz'ya [13], Kleinman {12]) nor in
fact is it pecessary to insist that ¢, be smooth. Even with shapes such as those shown
in Fig. 2, uniqueness for the floating body problem has been shown provided the
angles indicated in Fig. 2 are restricted; 0 < o € v/2 and 0 < 8 < 2x. Precise
conditions on ¢, are given by Kleinman [12] and Wienert [30]. Even the condition
that vertical rays from c; intersect c, at most once may be relaxed, a > »/2 in Fig.
2, as was shown by Simon and Ursell [24] in the two-dimengional case. Similar results
in three—dimensions art eagerly awaited.

With this uniqueness result for the boundary value problem we know that if an
integral equati_n leads to a representation of a solution of the floating body problem

)
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Fig. 2

it must be the solution. In the notation of the previous section a Green's theotem
approach leads to a representation of the solution of the floating bady problem an

3) = %(S,JV -D,yw) , peDy,
where w is a solution of the boundary integral equation

(4) . w+X,yw=8,,Y , p€e,.
Altem&tiveiy, using a source distribution approach

(6) $:=5,sw , pED,,
where w is a solution of

(6) w+K,gw=V , pEe,.

Note that while we use the same letter to designate the solution of the boundary inte-

gral equations in each case, these solutions will be different. In the Green’s approach;

equation (4), w is the unknown value of ¢ on c, whereas in layer approach it is not.
IfIm k& > 0 then either integral equation is uniquely solvable. However, ifiImk =0

there will occur discrete values of k (irregular frequencies) for which there will exist
non-trivial solutions of the homogenecus equations

w+‘I_{...,;w =0 and w+7€,,4w= 0.

The samne values of  will be irregular for both equations but the corresponding solu-
tions (eigenfunctions) will be different.
For Im k& = 0 we list now a gumber of boundary integral equations which are

uniquely solvable together with the corresponding representation of the velocity po-
tential in the fluid domain.

!
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Boundary Integral Equation Representation of Solution
in D+
(7) W+R‘:JW+TIN.,JW:-" Sa,jv'*‘q(Kl,JV—'V) ¢=—§Dl,Jw+ %S.,JV
Imn#0
“(8) w+K,yow+nN,gw=V ¢=S,sw+nD, w
Imn#0
) w+Romww=S,mV ¢ =-kD,w+ 4S5,V
(10) w+ K, pw=V ¢=5mMw
(11) w +K w4+ %Y:.JW =S,V o= —%D.Jw-&- iS.,;V
(12) w4+ K. ow+ K] ow+kSpow = SuoV ¢ = ~iDsow—}Dyow
-35y0w+ i-S,,oV
(13) f w(g)z2-wi(qQ)dsy = f V(q)ui(q)ds, ¢==kD,sw+ 4§80V
=012,

We assert that sll of these integral equations are uniquely solvable however it
must be quickly added that rigorous existence proofs have not been carried out in
any case. Such proofs are especially difficult for those equations involving the hyper-
singular operator N, j. Nonetheless ernstence of a unique solution of a complicated
regularized form of (7) has been proven by Wienert {30] for nonsmooth surfuces as
depicted in Fig. 2 for all functions V' which are integrable on ¢,. Then, following the
procedure described earlier, this produces the solution of the boundary value problem.
Once existence of this solution is established, any integral equation derived by a valid
use of Green's theorem will be assured of having at least one solution. The only
remaining question is uniqueness and this has been established for all of the equations
. in the table.

Uniqueness for equations (7) and (8) was established by Kleinman [12] (see also Lee
and Sclavounos, {15]) and sumerical results using these equations have been presented
by Lee and Sclavounos [15] and by Lau and Hearn [14]. Note that existenca for the
layer equation (8) still uncertain.

The modified Green’s functions used in equations (9) and (10) stem from the work
of Ursell [26) and Martin [19] and Ursell’s proof establishes umquenm As before, ex-:
istence for the equation stemming from ihe use of Gieen’s theorem is assured via the
argument based ultimately on Wienert's work, while existence for (10) is uncertaiu.
However, since no hypersingular operators are involved, the theory of boundary inte-
gral operators for potential theory in nonsmooth domains (Wendland [29], Burago and
Maz’ya {5], Kleinman [12]) should suffice to apply to establish existance and unique-
ness for both these equations. The details have not been carried ocut however. It
should be noted that a related modification of the Green’s function in which only oae
multipole potential was ad ied underlay the work of Ogilvie and Shin {22] however
while this was shown to eliminate one irregular frequency it will not eliminate all
irregular frequencies.

Note that equations (7)~(10) are boundary integral equations on ¢y only while
equations (11) and (12) are not. Equation (11) is usually attributed to Ohmatsu {23]
who in turn credits Wood {31]. Note that the integral equation is over both ¢, and
cw while the representatiou involves the restriction of the solution to ¢,. Ohmatsu -
proved uniqueness (sce also Kleinman [12], Chaug and Pien [6] and, for an alternative

)
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but similar approach, Fernandez, {9]); Equation (11) employs the simplest Green's
function at the cost of integrals over the entire {ree surface ¢y. Originally derived by
Bai and Yeung [4] and Yeung [32], uniqueness was rigorously established L, Angell et
al. [1]. Numerical work has been doac by Bai and Yeung and, for the two dimensional
case, by Lia 18]

Finally equation (13} is not strictly a boundary integral equation b an infinite
set of moment equationas, the so—called null field equations and uniqueness has been
shown by Mastiin 18], [20]. One way of arriving at the null field equations is to
employ Green’s theorem in D-. Another approach involving this iea supplements
the boundary integral equation on ¢, with the Green's identity evaluated at specific
points in D-. However adding only a finite number of such points does sot suffice
to establish uniqueness for all k. Nevertheless this method originated by Schenck has
enjoyed numerical success [14].

10.4. Optimal Design.

In this section we turn to certain optimization problems related to the optimal dexign
of the shape of a floating body. Regardless of whetlier the body is {ully or ouly partially
submerged, the quantities of physical interest include not only the wave patterns which
can be derived from the velocity potential but also functionals of the potential such as
sdded mass and damping factors which measure the distribution of energy in the fluid
(see e.g. Wehzusen and Laitone [28], p. 567). These factors are, of course, dependant
upon the geometry of the body and it is this dependance which we intend to study
in this section. In particular we discuss how these quantities may be optimized over
restricted classes of body geometry.

As the quantities to be optimized will depend on the velocity potential which in
turn depends on the choice of surface, we will need to consider a family of boundary
value problems generated by an appropriately chosen collection of possible surfaces.
If we denote this collection of surfaces by Q then a boundary value problem (1a)-(le)
may be defined for each ¢, € 2. The fluid domain D4 depends on ¢, and is denoted
by D4(s). The corresponding solution may be indexed as ¢, to explicitly exhibit its
dependence on ¢,. Note that, because we are considering a family of boundary value
problems, the data V in (1b) must be defined throughout the domain formed by tae
union of all surfaces in Q. This is indeed the case, for example for heaving motion
where V = ~ii - 3.

The optimization problems under consideration involve functionals defined on
the space of velocity potentials, that is. real numbers associated with each velocity
potential which ia turn depends on ¢, and V. When it is convenient to explicitiy show
this dependence we will write @,(p, V). We confine our discussion to the problem of
minimization since maximizing a functional L is equivalent to minimizing —L. Thus
with L denoting the functional, the optimization problem is that of finding ¢,y € 02
for a given V such that

L), V) € L(c,,V) forallc, €Q.

Specific choices of L may be made to embody desirable design criteria. In particular
we may choose the functional to be the added mass in which case

L(e, V)= Rc/ de(c, VIV (p)ds .

Note thai by appropriate choice of V the {unctiona! will represent the added mass
associated with any of the six rigid body motions, diffraction or combinations of these
motions.
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For such optimization problems, there are two basic questions: that of the exds-
tence of optimal solutions and, once existence is assured, that of the computation of
the optimal solution. We will consider these questions in turn.

In order to show that an optimal solution exists we use a reformulation of the
boundary value problem io terms of a uniquely salvable boundary integral equation
which will exhibit, explicitly, the dependance of the solution on the surface ¢,. This
is needed in order to establish the continuous dependance of the solution ¢,, not
only with respect to the data V which is standard, but also with respect to the
surface ¢,. This is a 1nore difficult mataematical problem. One method of proof
paralleling that used by Angell et al. 2] and Angell and Kleinman [3] is to introduce
an explicit parameterization of the admissable surfaces and then transform the integral
equations on ¢, to equations on a reference surface by introducing the Jacobian of
the transformation. This exsentially moves the dependence on the surface from the
solution to the (now more complicated) kernel of the integral equation in which form
the continuity is deduced. The technicalities are by no means trivial, even when the
admissable surfaces are smooth. For non-smooth surfaces such as those depicted in
Fig. 2, the details have yet to appear although the uniqueiy solvable integral equations
of Wienert [30] are thought to provide what is needed for this approach. Once the
continuity of the functional L is established on a suitably restricted class of admissable
surfaces, it follows that L will assume its absolute minimum on this class .

Turning now to the question of developing a constructive method to approximate
the optimal hull configuration, we can extend the method used in (3] to treat the
totally submerged body to the more difficult case discussed here. The constructive
method proposed in [3] relies, not on the integral equation formulation, but rather ou
the availability of an appropriate complete family of solutions which we take to be
Ursell’s mulitipoie potentials {1} introduced previously. The completness properties,
at least for the smooth case, were established by Martin [20] for the two-dimensional
infinite depth case. Similar resuits for the present case remain to be established.

Our constructicn procedure is a penalization method. Such methods usually in-
volve the introduction of additional terms to the cost functional involving both the
partial differential operator and varjous initial aud boundary conditions. The use of
complete families allows us to simplify the method by introducing only the penaliza-
tion termn corresponding to the boundary condition on the (uzknown) hull.

Specifically we approximate ¢ by s linear combination of multipole potentials each
of which satisfies all conditions of the boundary value problem (except the boundary

condifica on ¢,) for every ¢, € 1. Then for fixed N we seek constants {a§N)} and
i € @ which minimize

N ~
LMNa™M, M = R‘/:(N) Z aMui(p)V(p)ds + v / »> “gN)%% - Vi3ds
¢ =0 c{N) =0
This approach is completly analogous to that int: sduced for the totaily submerged
body (3} where we have shown that the sequence of minitnizing surfaces {CSN)} exists
and has cluster points and that these cluster points in turn approach a minimizer of
L(c,, V) as v — 0o0. Details of this approach for the floating body have yet to appear.

10.5. Weak Solutions.

In section 1.3 we discussed questions of existence and uniqueness of solutions of the
floating body problem, equation (la-le), from the viewpoint of boundary integral
equations. This indeed is the classical approach to existence for boundary value prob-
lems and of course also provides a basis for numerical solution such as the well known
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panel methods. However there is another approach which has seen considerable activ-
ity in the modern theory of partial differential equations. This involves a Hilbert space
or variational approach and leads to so-called weak formulations and corresponding
weak solutions which form the basis of finitz element methods. While this approach
has been used in water wave problems, a complete weak formulation and correspond-
ing existence and uniqueness results for the present problem are still not available.
One of the difficulties lies in the fact that the fluid domain is infinite and has an in-
finite boundary. Some success has been reported by truncating the fluid domain and
adapting available results in this simpler context Euvrard et al. [8], Bai and Yeung
[4), Yeung [32]. Kuznetsov and Maz'ya [13] considered the entire fluid domain but did
not establish existence solely in the weak context, depending instead on the boundary
integral results. Another attempt was presented by Lenior and Martin [17] but this
tesult was flawed as discovered by Ursell [27]. In the case when Im k > 0, a complete
weak approach has been established by Dcppel and Hsiao [7]. In this section we give
the essentials of this approach and indicate where difficulties remain.

We begin with the derivation of the sesquilinear form for the problem. Let us
denote by ¢, the surface of a cylinder of radius which contains the ship hull (ca =
{(p.0,2)lp = a,0 €0 <270 < 5 < —h} and p < a for every p € ¢,). Applying
Green’s theorem to the solution ¢ and a test function ¥ in the {luid domain within
the cylinder ¢, leads to

/V¢-VEdq—k/¢Ed:=/V?ﬁds+/g—?;--\l;ds
oy 3 N ‘e

where D3 and c“f denote the portion of Dy and ¢; within the cylinder ¢q. If it is true
that

iim -a-d-’-'u_)ds =0

e—co j On

w2 arrive at the equation

(14) B(¢,¥) := /v¢ - Ywdsq - k/d;i:ds = /V.\st
D, 7]

Ca

which implicitly defines the sesquilinear form B(4, ). However the radiation condition
{1e) assures only that ¢ = O(a~1/2) on ¢, hence the test function ¥ must have more
iapid decay as ¢ — oo in order for the integral over ¢, to vanish. Equation (14)
provides the basis for the weak formulation only after we specify the function spaces
{(Hilbert spaces) in which the test functions lie and in which the solution is sought.
If the domain were finite then the standard energy space is H! which essentially
includes functions which are square integrable together with their first derivatives
over the domain. However for the problem at hand this space H! is not appropriate
for the sclution ¢ since ¢ and its derivatives are not square integrable in Dy unless
Imk > 0.

For Im k = 0 it i3 necessary to choose a different function space setting in order for
equation (14) to be valid. The original boundary value problem dictates properties
that the solution space must have in particular regarding the growth as p — oo.
Taer~forr we choos: ¢ to be in 1-{,1“(D+) by which we mean that ¢ and its derivatives
are squal  integrable in any finite subdomain of D4 and the restriction of ¢ to ¢; is
square integrable on any finite subdomain of ¢;.

This is not sufficient to ensure that the radiation condition is fulfilled and there-
fore this condition must be imposed as an additional restriction. However with the
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“solution space” so chosen it is necessary that the test function ¥ lie in a different
function space. A suitable choice is Hiomp(D4+) by which we mean functions which,
together with their first derivatives, are square integrable in D4 and in addition each
function will vanish outside a bounded subdomain of T’y (not necessarily the same
subdomain for every function).

Now a precise weak formulation of the fioating body problem is the following:
given V € La(c,), find ¢ € Hioe(D+) which also satisfies the radiation condition (le)
such that equation (14) holds for all ¢ € Hiomp(D4+). A solution in this case is called a
weak solution of the floating body problem. The next step is to establish the existence
and uniqueness of a weak solution. Although progress in this direction has been made,
the complete proof has yet to appear. In order to give some idea of where difficulties
remain we will outline an approach when Im k > 0 where existence and uniqueness
can be established.

When Im & > 0 the classical radiation condition implies that solutions decay
expouentially as p — oo. This means that ¢ and its derivatives are square integrable
in Dy and ¢ is square integrable on ¢;. Now we may choose the space of test functions
as well as the solution space to be the same namely H := H.'Dy )N La(es) equipped
with a special norm and inner product. We define the inner product on this space to
be

(é,¢) = / Vé - Vydq L+ f $¥ds
D4 by

and the induced norm ||¢l] = \/(¢,#). This differs from the standard inner product

since there is no term of the form | ¢¢dq. However it has been showa by Doppel and
D+

Hsiao {7] that this term is unnecessary, that is, the norm defined above is equivalent to

the standard norm. Morsover the presence of the integral over the free surface enables

us to establish the following so~called coesciveness property for the sesquilinear form

defined in (14). There exists a constant (which may depend on k) A(k) > 0 such that

|B(¢, &)} 2 A(k)il8l12

forallo e H.

In addition the sesquilinsar form is continuous in the sense tiiat there is a constant
a such that

1B(¢, ) < aliglilivll

for all 6, ¢ in H.

Fioally the right hand side of equation (14) defines a bounded linear functional
on H in the sense that

| [ Vst < gl

for all ¥ € H where 3 is a constant.

The process of establishing these results is not trivial and details may be {found
in {7). However once they are established, the existence and uniqueness of a weak
s[sohlxtion is a consequence of the impprtant Lax-Milgram lemma, (see e.g. Friedman
10).

By a weak solution is meant a function ¢ € H such that equation (14) is satisfied
for all ¥ € H. It is relatively easy to sec that this weak solution will also satisfy the
requirements given earlier for Im & = 0.

In the case when Im b = 0, we would hope to establish similar results but the
previcusly mentioned breakdown of square integrability on D4 causes difficulties. It
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is possible to prove that the right hand side of equation {14) defines a bounded linear
functional on Hémp(ﬁ+) and it is also possible to establish the continuity of the
sesquilinear form. However the coerciveness property of the sesquilinear form has not
been established and this is a problem of considerable magnitude.

An alternative approach to existence and uniqueness in the case Imk = 0 involves
a so—alled “limiting absorption” principle see e.g. Leis {16). This involves taking a
limit as Im & — 0 of sclutions for Im k > 0, whose unique existence is known,

To our best knowledge the only attempt to follow this idea is contaiped in the
work of Lenoir and Martin [17] but their result is subject to question because of the
unavailability of a Rellich type lemma in this context.
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Antenna Control and Optimization

THOMAS S. ANGELL, ANDREAS KIRSCH, AND RALPH E. KLEINMAN

Invited Paper

A class of radiation problems is considered wherein an arbitrary
smooth surface on which currents may be induced is treated as
an antenna. A variety of measures of antenna performance are
defined in terms of functionals of the radiation pasern. These in
turn give rise 10 a class of optimization problems in which the
current distribution is sought which maximizes or minimizes one or
another of the antenna performance functionals. A general method,
based on the use of vector wave funciions, of reducing each
problem 1o one in finite dimensions is presented. Some numer.=2l
examples are presented 1o illustrate results anainable by these

1. INTRODUCTION AND BASIC PROBLEMS

Antennas, devices for transmitting or receiving electro-
magnetic energy, take on a varety of physical forms.
They ca* be as simple as a single radiating dipole, or far
more coplicated structures consisting of nets of wires or
solid conducting surfaces. In any specific case, questions
arise from the desire io control and even optimize the
performance of the radiating structure through appropriate
“feeding.” In this paper, we wish to review some com-
mon themes arising in response to these questions and to
present a general mathematical formulation which, if not
encompassing all such problems, at least may serve as a
unifying framework within which we may fruitfully study a
significant portion of such applications. In this introductory
section we will set notation and formulate some specific
radiation problems. The second section is dedicated to a
discussion of various measures of antenna performance and
the formulation of some typical, and we believe important,
optimization problems. The remaining sections are devoted

_to particular case studies.

The most common class of antenna optimization prob-
lems concerns arrays of clementary radiators and the lit-
erature abounds in papers dealing with such structures.
Here we treat a different class of problems, those involving
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8912593,

T. S. Angell and R. E. Kleinman are with the Depantment of Mathe-
matical Sciences, University of Delaware Newark, DE 19716,

A, Kirsch is with the Institut fiir Angewandte Mathematik, Universitit

Erlangen, Erlangen. Germany.
1EEE Log Number 9103725.

closed three-dimensional bodies. Rather than consider ele-
mentary radiators mounted on conducting bodies we treat
the entire body as an antenna and address the question of de-
termining that surface current distribution which optimizes
some antenna performance characteristic, W= state at the
outset that we will make no attempt to discuss practical
methods for producing particular current distributions. Such
questions are beyond the scope of this paper. Rather,
it is our intention to present the analysis of particular
mathematical models which can be useful in engineering
design, if in no other way, at least in so far as it clarifies
theoretical limits,

In this spirit, we will consider a prescribed radiating
structure D., with boundary S, as some subset of the
usual three-dimensional space, which represents a physical
body capable of supporting a flow of electric current. We
assume that D coniains the origin of coordinates. We will
also assume that the boundary S is smooth (no edges or
corners) and denote the connected exterior region by D..
We denote points by their position vectors z and y; ifz € §
then the normal to S at the point £ will be written figz, We
will adopt the convention that the unit normal to S at any
of its points is directed into the exterior domain D.; the
derivative in the direction of fig will be denoted by §/8n¢.
We will write » = [z| for the radial variable in spherical
coordinates and £ = z/r as the unit radial vector. In
spherical coordinates = {sin 8 cos . siné sinp, cos 8).
Suppose that the regicn Do exterior to this body supports
an electromagnetic field, denoted as usual by the pair
(E. H). Assuming harmonic time dependence e¢~'=*, this
field is required to satisfy the time—harmonic form of the
Maxwell equations

V x E = ikZoH =0 (1.1a)

V x H+ikYoE =0 (1.1b)

1/2
where Zg = (fff) Yo = 2o, k= w(eomo)!/? and
€g.po are the free space permittivity and permeability
respectively. Zp and Y5 are the free space impedance and

admittance. In the case of solid bodies, the interior may
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also support such a field (with different £, 2,Y") as is the
case in the transmission problems aiising in electromagnetic
scattering theory. We will not discuss these problems here.

We may imagine, in the case of a radiating structure, that
the electromagnetic ficld is produced by a surface current,
J, with total power given by

Zy / |J|? ds (1.2)
S

where |J| denotes the magnitude of the complex vector J
and ds is the element of surface area (on the unit sphere
ds = sin ¢ dd dg). The surface current J has the same units
as H (see (1.5) below) and the factor Z, ensures that (1.2)
bas the units of power. Similarly, we may define the total
power in the near field in terms of the familiar Poynting
vector integrated over a sphere large encugh to enclose the
antenna. If such a sphere is denoted by S,, then the integral

P,.:=%R.e{/ f.-ExErds} (1.3)
S

represents the power radiated through the sphere S..
Prescribing the current J on § provides the boundary data
required for 2 well posed radiation problem. Specifically,
the radiation problem consists of finding the pair (E,H)
such that Maxwell’s equations (1.1a)<(1.1b) are satisfied in
D.. together with the Silver-Miiller radiation condition

£ x V x E +ikE = o(1/r)
a8 r— 00

Ex Vxd+ikH =o(l/r) (1.4)
and satisfying the boundary condition
axH=J on S. (1.5)

Calderén [1] has shown that this problem has a unique
solution for every J € L2(S) where L¥(S) is the set of all
vector functions, defined in S, whose normal component
vanishes and whose magritude is square integrable. We
consider the problem of finding J so that the unique
solution of the radiation problem -described by (1.1a),
(1.1b), (1.4), and (1.5) behaves optimally with respect to
ane or another of the criteria described in Section II,

in problems of control of antennas, the property of
interest is roost often the radiated far fieid. Recall that the
fields E and H are known [4] to have the representation

E c:kr N 1
(z) = - F(:)+0(;5), T — 00 (1.6)

H(z) - exkr

(5:)+o(rlg), r—oo. (I7)

The vector function F', which has no radial component,
1s called the radiation pattern. The power radiated into the
far field is

N
=%Re{,l_i_’2°/ ix-ExEds} (1.8)
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or in the notation of (1.3), P = lim,_e Pr. With (1.6)
and (1.7), P may be written

=20 |F(é)|2;is (1.9)
2 /s,

where S, is the unit sphere. In tems of the L*-norm,

P= 3’-"- ||F||§3= . (2.10)

We use the notation || - || 13(sy) to denote the L? norm of
tangential vectors on S, the surface of the unit sphere, and
| - lza(sy to denote the L? norm of tangential vectors on
the surface S. It is important to distinguish between these
two norms. _

As the problems of antenna control that we intend to dis-
cuss are those in which some numerical measure involving
the far field is to be optimized by selecting the appropnatc
surface current J from some preassigned subset of L2(S),
it is necessary for us first to understand the mathcmaucal
relationship betw. . the current on the radiating body and
the far field o/ the resulting exterior ficlds. The fact that
there exist uni jue solu:ions of the exterior boundary value
problem guaraitees the exisience of an operator K which
associates 10 cach adimissible current J the corresponding
far field #. That is, for each admissible J on § there is a4
unique solution of the boundary value problera, equations
(1.1 a,b), (1.4) and (1.5), and this solution, in the far field,
has a unique radiation pattern F', see equations (1.6) and
(1.7), i.e, KJ = F. This operator K is not explicitly
known except in special cases but some of its important
properties are known. These may be inferred by examining
the representation of the fields in terms of dyadic Green’s
functions [2], (3]

H(z) = / Iy) Yy x Plzy)dsy  (1.11a)
s
E(z) = ——— v x / J(y) - Vy x [(z,y) dsy (1.11b)
where T' is the dyadic
I'=T8 + ez + 146 (1.12)

é; = 1.2.3 are rectangular unit vectors, and the vector
fields Iy, ¢ = 1,2.3, satisfy

Vz x Vg x I — kT = &6(lz — ) (1.13a)
xVgx D+l =0(1/r) as r —-00 (1.13b)
ngxi=0 on §. (1.13¢)

The T, have the same asymptotic behavior as the fields E
and H:
1kr

[, = S;‘ Fi(z.y) + O(1/7?) (1.14)
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where the functions Y, @ = 1,2,3, are apalytic in the
sense that their Taylor expansions converge. If we define
the dyadic

3
L(z,y) =) Fiz.v)é (1.1%)

im]

then the far field pattem F is given by
F(z) = = 2o x / J(y) Vy x D(Z,y) dsy. (1.16)
s

In spite of the fact that the kernel I (and hence I) is not
known explicitly except for certain special surfaces S, the
continvous differentiability of the functions F; in (1.14)
guarantees that the relation (1.16) defines the required
operator K. In addition the relation (1.16) ensures that K
is Lormyact, that is, sequences {J.} which arc bounded in
L%(S) are mappcd into sequences {KJ,} which coaverge
to a function in L?(S5)) (morc precisely a subsequence
will converge). Thxs property is of extreme importance
in proving the existence of optimal curmrent distributions.
Moreover, by Corollary (4.10) of Colion and Kress [4], K
is a one-to-one mapping. We can also introduce the adjoint
operator K* (also compact) which associates to each far
field F in L?(S)) a comresponding .J in LZ(S) through the
defining relation

(KJ.F)pss,y = (K F)pa g,
forall FelL}S), JeL¥S). @117

where (-,-)p3 g, denotes the inner product in L3(S) and
similarly for .5'1 With this notarion we sec that we ¢ m
rewrite (1. 9) as

PJ) = (F F)La —};E(IC‘)CJ, J)Lf(S)' (1.18)
This form will be pamcularly useful in our later discussions.

One disadvantage of (1.16) is that, except in particular
situations, we have no explicit form for I and consequently
no simpie way to compute the far field generated by
a given surface current. Although there are a number
of ways attacking this problem numerically, we want 2
method which will also prove amenable to the optimization
probiems which are our main concern. One such method
involves the use of complete families of solutions whose
asymptotic properties are easily calculated. Such families of
functions are available in terms of a distribution of dipoles
in D_ [1], [5] or alternatively as multipoles at the origin
(6]. We choose the latter approach. Following Miiller [7]
we introduce the functions

Yam = P (cos 8) cos myp

n=1l....,20, m=0,....n
YUnm = P77 (cos 8) sin me
n=1,...,00, m=-1,....-n  (1.19)

where P* are the associated Legendre functions of degree
n and order m. Denoting the pherical Hankel functions

ANGELL ¢r al; ANTENNA CONTROL AND OPTIMIZATION

of the first kind by hn, we choose the collection of vector
wave functions, defined in R*\{0},

g = {V X (zhn(kT)‘bn.m)'
V X V x (Zhn(kt)nm):
n=1,...,00, m=~-n,...,n} (120

whose far fields form the collection

i—n—l
Fi= { lc Vinm X 2,772 X (Vihn,m X ) :

n-—-l,...,oo,m:—n,...,n}. (1.21)

For simplicity, we will reindex these families and write,
simply,

§= {gn}nwal
and

{fn nm] *

Now define the set of tangential vector fields on the surface
S in terms of the restriction of ¢ to S by

gg(S) = {ﬁ X gn};\“-l .
Then

fa=KHxg,). (1.22)

Since S is taken to be fixed we introduce a shorthand for
clements of Gi(S)

ot =axg,. (1.23)

The usefulness of this family is expressed in the following
theorciu.

Theorem 1.1.: Let S be a smooth closed surface contain-
irg the origin in its interior. Then the family of functions
:(S) is cornplete and linearly independent in L?(S).

The proof is due to Milller [7] who specifically applied
the results of Calderdn (1), and Wilcox [5]. Moreover it is
straightforward to establish the following.

Corollary 1.1.: The family of functions F is complete
and linearly independent in L?(S,).

Since the set §i(S) is complete in L?(S), any surface
current can be approximated to any desired degice of
accuracy by an appropriate linear combination of elements
of G¢(5). Thus given any ¢ > 0 there exists an integer N
and coefficients ¢, n = 1,..., N such that

I - }: Mgz sy <€ (1.24)
Here, the choice of coefficients depends on the number of
terms used in the approximation for, while the set G.(5)
is a complete linearly independent set, it is not in general
an orthogonal family.
If we write

I = ch”w; (1.25)
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then the corresponding far field ™) is simply given by
N

FVI =% oMy, (1.26)

nmel

the specific form of the £, being given in (1.21). Centainly,
since K is continuous and bounded, we have that

T - K2 s, € ||V = Jllgs sy < ce (1.27)
for some suitable constant ¢ so that the far field F(V/ like-
wise approximates F' according to (1.27). Thus the use of
complete families of solutions will allow us to approximate
the far fields produced by given surface currents without
the explicit knowledge of the Green's function. We remark
that the dependence of the far field on the surface S, which
is explicit in the use of Gieen's function, is present in the
approximation method in that the coefficients will depend
on S, It should be noted that these complete families have
been used successfully 1o solve the boundary value problem
by minimizing the error in satisfying the boundary condition
(8). However there are many competitive methods, e.g.,
boundary element or moment methods, which mway well
be supeiior for that purpose. Our use of these families
is motivated by their convenience in finding approximate
solutions of the antenna optimization problems described
in the next section rather than solving boundary value
problems,

II. MEASURES OF ANTENNA PERFORMANCE

Traditional wmeasures of antenna performance involve a
number of scalar quantities including power radiated into
the far field as given by (1.9). Other quantities which figure
in the literature as useful design parameters include direc-
tivity, gain, and signal-to-noise ratio (SNR). The direciivity
is defined as a normalized ratio of the power radiated in
a particular direction to the total power radiated into the
far field

D) = 4n Yy [F ()2 /P. 2.1)

The maximum directivity, i.e.. D := maxz D(z) is fre-
quently used as a measure of the ability of the antenna
to focus in a given direction. The gain, measured with
respect to a given direction, is defined as a normalized
ratio of the power radiated in a given direction to the total
power fed to the antenna. In the present context we make
no assumption on the efficiency with which power fed to
the antenna is converted into surface current J. Rather we
define the quantity radiarion efficiency

G(z) = 4r Y§ [F@*/IJW3

() (2.2)

and the corresponding maximal radialion cfficienty G =
maxg G(£). The quantity G(Z) coincides with the usual
concept of gain only if all the power fed 10 the antenna
were converted te surface current. In addition there are
various so-called “quality factors,” defined differently by
various authors, but all intended 10 measure the “efficiency™
of an antenna by comparing the power radiated into the far
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field and the power supplied to the antenna structure. In
particular, one proposal for the quality factor, Q, is

- — 22 2 2
Q:=Q(J)=2; ||J|IL3($)/||F|153(5‘)

— 72 2 2

=25 ||J||L3(5)/”’CJ||L3(51) . (2.3)

We will use this form for illustration purposes only and refer
to the book of Rhodes [9] for a more complete discussion
of quality factors. We pause to remark that this definition
of quality factor is connected with the far field operator in a
fundamental way. Specifically using the far field operator K

I
(5y)
IKI = sup —riN)
JelLi(s) ”J“L3(5)

1
= sup (—r*“>>°- (2.4)
JeLis) Yo Q)
Hence,
1
inf YZQU)= o, 2.5
JeLi(s) @ QL) K2 @3)

The notions of directivity and radiation efficiency as
given above by (2.1) and (2.2) respectively, represent an
idealization of quantities that can actually be measured. It is
more realistic to interpret measurements of the intensity in
the far field as averages over (perhaps small) paiches of the
unit sphere, In particular let a(Z) denole the characieristic
function of a measurable sector of 5y, i.e.

(i) = 1. & € sector
T 10, % ¢ secior.

Then we may generalize the concepts of directivity and
radiation efficiency in u particular direction by replacing the
expression |F(2)|? with an average over a sector containing
the particular direction z:

HOF"? 2
ol 5,y L (9 75 AR
where « is the characteristic function of the sector. Then
ix Y o FI3 o
Dla] = T : 2.7
"'(s
and
an Y3 ilaFI,
Gla] = +—r3 o (2.8)
el o s

arc the generalized dircctivity and radiation efficiency in
the sector characterized by a. If the sector shrinks to the
point $g (a(Z) = 1. T = Zo: alZ) = 0 & # g), then the
generalized directivity and radiation efficiency become the
pointwise guantitics given by (2.1) and (2.2). If the sector
1s the entire unit sphere (my(z) = 1. 2 € S;) then

Dlay] = (2.9)
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and

1
0[01] = —Q- . (210)
Thus the problem of maximizing the reciprocal of @ is
a special case of the problem of maximizing the radiation
efficiency G[a,]. Corresponding to (2.5) it may be seen that
4 Y2 |laK|?
sup Glaj = 4x Yo llakil
JEL?(S) ”O" 3(sx)

Another performance criterion involves the concept of
noise. Noise may be characterized by a function w defined
on the unit sphere which distorts the radiation pattern. A
measure of how much the radiated field is distorted by noise
is given by

(2.11)

/w&mﬂmws
Sy

and the SNR is defined to be

|F(&))?
Js, w(@? [F(9)1? ds
where the variables of integration in the denominator have

been changed to avoid confusion. Again, we may define a
generalized SNR as

SNR (3) =

(2.12)

laFl%s

SNRle] = To o(er FGId

3 (2.13)
[ET

Since we can relate the far field to the surface current
which generates it, then problems of optimizing a specific
performance criterion can be viewed as particular cases
of the problem of maximizing a functional J(J) where
the surface current J varies in some set of functions
on the surface S which represents physicallv realizable
currents. This requiremaent of physical realizability typically
introduces constraints in the optimization problem. If U
represents the set of realizable currents the constrained
optimization problem is that of finding

sup J(J).
Jev

(2.14)

The question of a concrete description of this set U is an
engineering problem the details of which are beyond the
scope of the present discussion. One may refer to [10],
[11] for typical examples. For mathemarical reasons it is
necessary to require that U have certain propertics, namely
that it be closed, bounded, and convex, i.e., that it contains
all line segments joining two points of U. In our exarnples
we take only the most obvious constraint sets. In particular,
we constrain the total power on the antenna by taking the
bound

1/2

for a suitable constant M. Such a constraint is intuitively
reasonable as it is certainly true that the power supplied to
an antenna is iimited.

ANGELL ¢f al- ANTENNA CONTROL AND OPTIMIZATION

In addition, such quantities as the directivity or the quality
factor may well figure in the definition of admissible inputs.
Thus for example, a bound on the quality factor limits the
amounts of energy stored in the near field. The relation
(2.5) shows that Y7 Q is bounded by 1/||K||*> where £
is the far field operator. Insofar as the far-field operator is
determined by the physical structure of the antenna, e.g., its
shape, or the materials from which it is made, we can say
that antenna structutes with large values of ||K|| have low
quality factors and hence store less energy in the near field.

With these various measures of antenna performance in
mind, 2 numbver of specific optimization problems may be
formulated. Roughly speaking, the optimization problems
in the Iterature fall into two categories. The first, which
we may call the synthesis approach, specifies a desired
far field pattern (which may or may not be realizable) and
asks for an admissible current that will produce a far field
most closely approximating the desired pattern. The second,
more indirect approach, chooses some performance crite-
rion associated intrinsically with the antenna and asks for
that current which optimizes that criterion, as for example,
when one asks to maximize thc radiation efficiency. For
the purposes of the present discussion we classify some
common unconstrained problems in the Table 1.

All of the optimization problems listed in the third
column are of the form: find J, the surface current in U,
the cless of admissible currents, which optimizes a cost
functional. The cost functional (e.g., [g |KJ - F)? ds,
Js, a(@) |KJ(£)|? ds, etc.) associates a nonnegative real
number with each J in U and the optimization problem is
10 find that J which produces the largest or smallest such
number.

It is oftan the case that one performance criterion is used
as a constraint in the optimization problem for one of the
other criteria. Thus for example Kirsch and Wilde [12),
[13] have considered the problem of maximizing the SNR
subject to an equality constraint on the quality factor. More-
over, certain of these criteria, as with Kirsch and Wilde,
are chosen sec that the optimization implicitly controls the
occurrence of undesirable effecis. Clearly, maximizing the
SNR inherently constrains the noise. Similarly maximizing
radiation efficiency involves a balance between the far field
in the desired direction and the amount of power at the
radiating surface.

Another approach is 10 use constraints which explicitly
restrict inputs or outputs. Consider, for example the gener-
alized SNR with w chosen to be 1 = a, Then we have a
criterion which tends tc increase the power in the desired
sector while decreasing the power in the complement. This
can be viewed as one approach to maximizing power in
the beam while keeping powei low in the side lobes.
Alternately, one could proceed as suggested by Angell and
Kleinman [14], by maximizing the functional

/ aiF(z)P dz (217
Si
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Teble 1

Performance Criterion Definition
Pattern matching to desired F (continuous)
Pattern matching to desired F° (discrete)

Power in & secior with characteristic a

Signal to noise ratio

Fig)?
I, o Fan

Is, IF(2) = F(2)ds
TN, IF(&) - PP

R[5, al@)F(#)3ds

Optimizatios Problem

minge. [5, KT = Fds
wmingep TiL, IKI (%) - Fiz))?
mAX gy js1 al#)|KJT(%)[*ds

1xJ(E) P
B Tev T0¢ Iﬂg(ﬁ)l"' %

Js, «@NLI(@)17ds

Generalized signal to noise ratio st.(tnF(tn’.x.
Js,ade Jo, W@ |F(&)17de
Quality factor 23 1S 13de
5 | [3de
Radiation efficiency

Y 1F()2
Jg 19134
Vi [, «lF2de
51 ads SI |4ds
an¥y 1F(%))?
S]I 13ds
arYy fs «lF2ds
Fx ade 31' 12ds

Generalized radiation efficiency

Directivity

Geperalized directivity

mAxJev i, o I, s KT @

. 1J1"ds
mJyey T kT Gds
$1
x|
wJGU 5! 19da
ar [o alK 1
max ' >
Jey ’S; ods is 1T ds
4rtXJ£)2
wJeU TS‘ T3 ,'ﬁd.
l-rf aikJ)3ds
s
max
Jev s, 29 Jg, iKJ17d

with the side condition
/S 1-a@) FEP <M (218)
1

for scme suitable choice of constant M. It would be
interesting to compare the results of these two approaches.

. MAXIMIZING POWER RADIATED IN A SECTOR

We illustrate this general approach to antenna optimiza-
tion problems with one of the specific problems discussed in
the previous section, namely determining the current distri-
bution on a surface S which optimizes the power radiated
in a sector of S; with characteristic function «. This is
done by reducing the problem to a generalized eigenvalue
problem which is solved approximately by projection onto
a finite dimensional subspace. Here we will summarize the
detailed results of [14], [15], and [16].

As indicated in the table of Section II the optimization
problem is to find

max | a&)|KI(@) ds
Jevu S
where, using the constraint given in (2.15) with M =1,

U={Je LSSt @D

(8)

Since afz) is real (o = 1 or 0) we may generalize (1.19)
and write

P(Jia) = / a(#) KT ds
5
= (K, Kd)pa,s, = (KTaKI I .

(3.2)

(51)
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Since a current J which optiniizes P (J: &) also optimizes
any constant times P(J;«), or notational convenience
we omit the factor 42 in the definition of P(J; ). We
recall that the operator K which maps L2(S) into L2(S))
and its adjoint X* which maps L?(S,) — L3(S) are
compact but not in general known explicitly. Even so this
characterization of the cust functional P(J, a) proves very
useful in determining approximate optimizers.

The first question to be answered, however, is whether
the optimization problem has a solution, that is, does there
exist Jo € U such that

P(J,a) £ P(Jg,a) forall JeU. (3.3)

The answer is in the affimative and moreover there is
an optimizer Jo for which ||Jollz2(sy = 1 even though
we search in U which contains surface currests for which
IMllz3¢sy € 1. Details may be found in [14}.

Having established existence of an optimal current it
remains to actually find it. To this end the characterization
of the cost functional in terms of the operators X and K*
in (3.2) proves useful. First observe that the operator

"Ri=K*ak : I3(S) — LY() (3.5)
is self-adjoint, compact, and non-negative since
(K*akJ, J)Lf(S) = (a)CJ.ICJ’)L?(SI)
= ||QICJIF2L:_‘(Sl) >0. (3.6)
This mcans.that thc s;;c.ctru-r;--c;f R i;s discrc-t-c..."r-:a.lua;c.i-
nonnegative and the multiplicity of all nonzero eigenvalues

is finite. It then follows that if (Ag.Jo) is an eigen-
value—eigenfunction paii for R such that Aq is the largest
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eigenvalue

sup (RJ, J)L:

= (RJo,Jo) 2,y = 4. (3.7
Jev, (S) L)

This reduces the optimization problem to an eigenvaiue
problem.

The next step is to provide a method for approxunaung
the optimizer Jy, the associated far field F'y and the optimal
power P(Jo,a) = Ag. Here we make use of the complete
family G¢(S) introduced in Section I. Our strategy is to
employ a Galerkin procedure which involves projections
onto finite dimensional subspaces. Let us define the finite
dimensional spaces

M) = span {g}}.; “(38)

and the associated far fields
F™ = span {f, = Kgt }o, (3.9)

where f, and gt are given explicitly in (1.19)~(1.23). In
the finite dimensional space the optimal current is.of the
form

N
J= Z Cngt,

(3.10)
nul
subject to the constraint
IIJ”Lz(S) Z Cngn =1.
n=l Li(s)
The eigenvalue equation
RI=2AJ (3.11)
becomes
N N
Y CaRgh=xM5" G4l (3.12)

nmxl nm}

and we seek the largest eigenvalue which we denote by

/\‘N) Forming the inner product with g%, leads to the
gcncralizcd algebraic eigenvalue problem

N N
2 Cn(Rah, @) pasy = A3 Calgh 9m) L2 5 -

nml n=1
(3.13)
But
(Rg:ng:n)L (s) (K:‘axgnrgm)L’(b)
= (axgrn Eg"‘)L?(Sl)
= (a‘f”’f"‘)Lf(S;) . (3.14)

Here we see the value of the particular family G.(S)
because ¢ven though the operator R may not be explicitly
known, the functions g}, and f,, are explicitly known (see
(1.20) and (1.21)) hence the quantitics (9n'9n)L’(5) and
(afa, fm)L’(s , may be calculated explicitly. The problem
of anienna opnmxzauon 1s thereby reduced to determining

the largest eigenvalue Ao and an associated N-component
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cigenvector (Co,n) (there may be more than one) of the
generalized algebraic eigenvalue equation

N N
Z Cn(afn’fm)-L"(s‘) = AW Z Cﬂ(g:ng:n)m(s) :

nezl n=1l (3.15)
The fact that the solution of this finite dimensional problem
can be used to approximate the solution the original opti-
mization problem is considered next, Define the functions

N
= z CC.ng:;

nel

. (3.16)
and

N
F =% Con fu.

n=]

(3.17)

Smce we have not imposed the requirement that
||J )” L =L let us introduce normalized coefficients

2 C
Com = T o (3.18)
and define
I Z Cong', (3.19)
n=]
and
R Z Comfa- (3.20)
nm}
It then follows, as proven explicitly in [15], that
im AL = . (3.21)

Neeoco

. (N .
Moreover there exists a subsequence of {J(() )}X,’_l. call it
(M)

{Jo }37m1» Such that
Jim 35 =7, (.22)
where Jg is an optimal curreni disiribution, i.c.,
Yo =P(Jia), (3:23)
and an optirnal radiation pattern is given by
Fo= Jim_ B (3.24)

This procedure has been carried out numerically for spher-
ical and cllipsoidal antennas [17]. As an illustration we
present in Fig. 1 the optimal radiation patterns for three
different surfaces, a sphere of radius g, ellipsoid with semi
axes .9a.a, l.1a and ellipsoid with semi axes .5a, a, 1.5a.
Our examples are chosen to demonstrate the effectiveness
of this optimization method in finding cumeat distributions
which give rise io radiation patterns with two separated
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Fig. 1. Maximizing Power Radiated in a Sector-Magnitude of
optimal radiation patterns for ellipsoidal antennas with (wo main
lobes.

main lobes. Thus the sector in which power is to be
maximized was characterized by the function

1, |9_ = “3 s l¢| S
a=(1, |9~ | < s el < "lgr‘ (3.25)
0. all olhcr (8.¢)

The magnitude of the optimsal radiation pattern is plotted
in Fig. 1 for two planar sections, one longitudinal bisecting
both main lobes and one latitedinal containing one main
lobe. The same sections are used for all three surfaces and
the shape of the optimal radiation patterns is seen to be
remarkably similar, although it should be remarked that
quantitative comparisons are not to be made since different
scales were used in different patterns. All calculutions were
carried out for ka = 10 and N = 198 (comespond-
ing to a maximum order of 9 for the spherical Hankel
functions in (1.20)). We note that while these patterns
display main beams which are considerably wider than
the sectors characierized by a, the qualitative structure of
the pauerns conforms well with the desired performance
criterion embodied in the optimization problemn. This ex-
ample illustrates the feasibility of actually solving one of
the optimization problems of Section I and thus provides
the antenna designer with a usable mathematical toal for
finding optimal current distributions on conformal antennas
of known configuration.

For a diffcrent approach to this problem of maximizing
radiated power, we refer the reader 1o the Diploma Thesis

of H. -G. Burdinsky [18] who uses a gradient method to
approximate the optimal solutions.

IV. OPTIMIZATION OF SNR

As a second example, we consider the problem of op-
timizing the SNR subject to a constraint on the Q-factor
(see (2.3)). This example is an exteasion to the three-
dimensional case for Maxwell’s equaticn of the two diren-
sional problem considered in (12}, [13]. Thus we consider
here the problem of maximizing the functional

|F())? KI(&)2
T w@RIF@IEds ~ Jg w(@)3KT y)lz‘ﬁ)

SNR(z) =

subject 10 a constraint
Y$ QW) = Mz s /1K 25, SC (42)

where, in (4.1), w represents the noise distribution which
is assumed to be nonzero on at least some portion of 5}
while, in (4.2) C is a given constant.

For each fixed value of z, (4.1) defines a functional of
J which we denote by SNR{J). Hopefully this abuse of
notation will cause no confusion. The denominator of this
functional vanishes only if the function w(z)F(z) = 0
almost everywhere however our assumptions prevent this
from occurring.

The basic existence result of [13] states that if there is
any nontrivial J € L?(S) satisfying the constraint (4.2)
then there exists an optimal solution, that is, if vy =
sup{SNR(J)|J # 0, Q(J) € C}, then v is finite and
there exists some admissible Jo such that SNR(Jo) = w.
The proof relies heavily on the fact that not only is K a
compact mapping from square integrable functions on $ to
square integrable functions on S; but K is also bounded
as a map onto continuous {unctions on S. The details of
the proof for the clectromagnetic case discussed here may
be inferred from the proof for the two-dimensional cast
appearing in [13]. Note that it is always possible to ensure
the existence of J satisfying the constraint (4.2) by taking
C sufficiently large.

Further analysis shows that, at each optimal solution, Jo,
of this problem the coinstraint (4.2) is aciive by which is
meant that

Y2QUo)=C 3)

(see [13]) Theorem 2.2 for details). Clearly under these
circumstances any solution of the optimization problem is
likewise a solution of the related problem of maximizing
the functional (4.1) subject 10 the equality constraint (4.3),

For numerical calculations we replace the Hilbert space
L,(S .by the finite dimensional space ;,'f ) (sec (3.8)),
which then replaces the original constrained optimization
problem with one in finite dimensions:

max SNR(J) (4.4)
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Fig. 2. Maximizing SNR-magnitude of optimal far field (—) and the
density of the associated single layer (- - -).

for
J & gi"\{0} (4.5)
subject 1o
YEQUNEC. (4.6)
Ilg; H}’: s
Choosing C 2> AT 2L ensures the solvability of the
1

L?(’”
finite dimensional optimization problems for all NV, In order

for the solutions of these finite dimensional problems to be
useful, we must, of course, have a convergence result, Suc
a result is given by Theorem 3.2 of &1'3]. In the present
context we can assert that the set {JOM} of normalized
optimal solutions of the finite dimensional pioblems has
at least one accuraulation point in L7(S) and every such
accumulation point is optimal for the originzl problem.

Actual computations for the finite dimensional problems
are carried out in [12] using a generalized cost functional
in which the quality factor constraint is included with a
Lagrange multiplier. The multiplier rule, applied in the
space L2(S), leads 10 a system of nonlinear equations for
the multiplier pg and the optimal current Jg,

1 . X
3 [ S0l @) dey, - (2)
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- ;15 K To(@)]2 KK J,
+00(I —CK*K)Jp =0 4.7

(Jo.(I - CK*K)Jg) = 0 (4.8)

where the tensor ¥(x,y) = Zp Vy x ['(z,y) x =, which
are then projected into the finite dimensional space 9§N>.

Actually, computations were carried out in {12] for the
two dimensional case for H-polarization (J = #u(z.,y) on
S where # is a unit tangent vector) for u of the special form
of a single layer distribution with density h. The surface S
was taken to be a circle of radius a and the noise distribution
w was taken to be the characteristic function of an arc of
200°, that is for

y=(cos §, sinf), ~n <<

< {11051 < 1000
W= 10,16~ 3> 100°.

A0

Figure 2 shows the magnitudes of the optimal far tield pat-
tern and the density of the single layer which produces this
far field for three choices of the direction £ = (cos 4. sin §)
in which SNR (z) is maximized. Also included are the
optimal values of SNR and the multiplier pg. In thesc
examples ka = 6, C = 10, ¥ = 15.
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Certain hydromechanical quantities associated with a floating or a totally
immersed body depend explicitly on the body's geometry. In this paper, the
authors consider the problem of choosing the shape of the body so that one such
guantity, added mass, is optimized. In particular, a constructive method of
penalization type is proposed which depends on the availability of a complete
family of solutions of the original boundary value problem and it is shown how
such familiss may be generated.

1. Introduction

WHEN a body, floating or submerged in an infinite, ideal, inviscid, and irrotational
fluid is subjected to a periodic vertical displacement, a wave pattern is created in
the fluid. The problem of determining this pattern from a knowledge of the body
geometry and applied forces is well known in fluid mechar..s.

In problems with either partly or fully submerged objects, quantities of physical
interest are not only the wave patterns which may be derived from the velocity
potential but also functionals of the potential such as added mass and damping
factors which measure the distribution of energy in the fluid (see e.g. Wehausen
& Laitone, 1960: p. 567). Tliese factors are dependent on the body geometry and
the natural question arises as to whether such quantities may be optimized over
restricted classes of body geometry.

The question of optimizing the added mass or similar functionals by chivosing
the shape of the object was addressed by Angell er al. (1986), who established the
existence of an optimal shape for a totally submerged body for a fluid of finite
depth in an appropriate function-space setting. This problem is again considered
in the present paper, this time presenting a constructive method for actually
finding shapes which optimize added mass or damping. In the terminology of
optimal control, the problem is one of optimization of geometrical elements (see
e.g. Lions, 1972). Other optimization problems of this gencral class have been
studied previously by, for example, Cea and co-workers (1974, 1975), Chenais
(1975), and Pironneau (1973, 1974). However, in contrast 10 much of this earlier
work, the natural setting for our problem is in an unbounded rather than in a
bounded domain.

It will come as no surprise to those familiar with the peculiar difficulties
associated with exterior boundary value problems that it is particularly useful to
reformulate the original problem, which here includes not only boundary
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conditions given on the bounded surface of the body but also those on the free
surface and on the bottom (both of which are of infinite extent), as a uniquely
solvable integral equation defined on the boundary of the body. The efficacy of
the boundary integral equation approach depends, at least in the first instance, on
the uniqueness of solutions to the original boundary value problein. This
uniqueness question should not be confused with the question of unique
solvability of some boundary integral equations derived, say, from a layer ansatz.
This latter question is sometimes referred to as the problem of irregular
frequencies.

The unique solvability o1 the boundary value problem for the floating body is
not completely understood, although, as John remarked in his fundamental paper
(John, 1950: p. 49), ‘There appears to be no physical reason why . . . the primary
wave motion together with the motion of the obstacie should not determine the
motion in the liquid uniquely’. In that paper, John established uniqueness only
with certain restrictions on the body shape, in particular that it be convex and
smooth, that it have normal intersection with the free surface, and moreover that
vertical rays from the frec surface intersect the body at most once. These
conditions may be relaxed somewhat (Kleinman, 1982; Simon & Ursell, 1984) but
some nonphysical restrictions remain.

When the body is completely submerged. John’s uniqueness proof no longer
appiies, However, Maz'ja (1978) has provided a pioof for a class of budies
delimited once again by certain geometric restrictions. The recent and interesting
paper of Flulme (1984) discusses the result of Maz’ja and effectively describes the
geometric meaning of the result. We will give a precise statement of this result in
the next section. At this point, suffice it to say that Maz’ja's condition provides a
reasonaole class of bodies for which we can assert <he uniqueness of solutions of
the boundary value problem in the case when the body is totally submergad.

In the case of the totally submerged body, Angell et al. (1986) derived, by using
a Green’s function, an integral equation which is uniquely zolvable for all
frequencies. This Green’s function, introduced by John, is that appropriate to the
entire fluid domain with no body present and satisfying the boundary conditions
at the bottom of the fluid (assumed fiat) and the hnearized free-surface condition
on the entire fluid/air boundary. It is the formulation of the boundary value
problem, the statement of Maz'ja’s theorem, and the derivation of this boundaiy
integral equation that are summarized in the next section, while Section 3
contains a description of the optimization problem and a statement of the results
obtained in Angell er al. (1986) concerning the existcnce of an optimal body
shape.

It is the final scction, Scction 4, which contains our main results. There we turn
to the question of a constructive method for finding approximate optimal
surfaces. We prove that certain familics of functions form complete familiss of
solutions and propose a penalization-type method for the constructive solution.
The idea of using complete families to find approximate solutions to elliptic
cquations goes back at least to the work of Picone and of Fichera (see Miranda,
1970, for references). Angell & Kleinman (1984, 1985) have used such families in
treating some optimization problems which arise in acoustic and in clectromag-
netic radiation problems. An approximation method similar to that proposed here
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is discussed in the context of an inverse transmission problem by Angell er al.
(1987). A related method in the inverse acoustic problem has been reported by
Kirsch & Kress (1986).

2, The exterior boundary value problem

We are concemed with solutions of Laplace’s equation in a domain D <R3,
unbounded in the x and z directions and ex:erior to a bounded boundary I,
which is assumed to be a Lyapunov surface of index 1. A Cartesian coordinate
system is fixed with the origin on the free surface and in terms of which the
domain D* =(R*x [~k ,0)\(I"UD™), where D~ denotes the interior of the
submerged body, as indicated in Fig. 1.

The submerged body will be assumed to be simply connected and lie in a strip
R? X [~k + €9, — €], with €,> 0. The condition that the surface be Lyapunov of
index 1 guarantees, among other things, that there exists a Lipschitz continuous
normal A at all points of I. We emphasize that 7 is oriented so that it points into
D*. Points will be denoted by p = (x,, y,, 2,) and, in cylindrical coordinates, by
P =(py, 8,,yp). Aund the subscripts will be omitted if there is no danger of
confusion.

With these conventions in wmind, we consider the boundary value probiem

A¢=0 in D*, (2.1a)
21 kp=0 ony=0, (2.10)
%’%; 0 on y = =4, @.1¢)
%:—’ =G onT, (2.1d)
together with a radiation condition
gg ~ ikgp = O(p™}). (2.1e)

yI

7 x
- ,
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In this formulation, G € C(I') and & := w?/g is a real parameter, where w is the
frequency of an oscillation (issuned time periodic) and g is the gravitational
consiant, while ky is the root with the largest real part of the transcendental
equation

k, sinh k,h = k cosh k,.h. (2.2)

Maz’ja (1978) introduced a restricted class of boundaries for which this
boundary value problem has at most one solution. We formulate that theorem as
follows.

THEOREM 2.1 Let V be the vector field in R* defined by
p(y =0 . 2%
oyt Pty

Then the hornogenecous boundary value problem (2.1) with G =0 has only the
trivial solution: provided thar

=0 onl (2.3)

A discussion of this result and its geometric significance may be found in Huime
(1984). We will refer to the class of ali such surfaces as the Maz'ja class.

Following John (1950), we introduce the Green's function for this problem,
which is normalized to have the form

1 1
=~ ——

(P, q)=~5- 7ql R(p) ) (e20))
where the function R has bounded derivatives with respect to g for points pe I
(see John, 1950: p. 96) and y satisfies conditions (2.1b, ¢, e). Using this Green’s
function to define single and double layer potentials, the usual jump conditions
can be egtablished as in the potential-theoretic case since the singular behaviour of
y and 8y/3n, is determined by the first term in (2.4). For convenience, we record
these results here:

Y(p. q)

p

Jim, 2= [ w(ayr(p. @ 4Ty = u(p) + f upyTELar, s

lim fu(q)-~7(p, g)dr, = *u(p)+J'u(p) Y(’; Dar,  @6)

q

where p— I'* means p approaches I' from D* or from D~, u e L(I'), and the
relations (2.5) and (2.6) hold in the L? sense (Miranda, 1970).

Moreover, if ¢ is a solution of the boundary value problem (2.1), then one may
use Green's theorem to establish the familiar relation

, 5 26(p) (peD)
[ (v, 95 0@ - 0@ 2= 1p. 0)) dL={ 8(p) (peD)., @7)
r e anq -

0 (pe D).
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If one then uses the boundary condition (2.1d), we have, for pe [,

[Wp.06@ L= 6@ z-vo D=0, @8)
r r on,

or, in operator notation,

t+KNe=| v(p, 9)Glg)dr,, @9)

where K* is the bound~+y integral operator with kernel 3v/8n,. We pause to
remark that, given a solution u of this integral equation, we may represent the
solution of the boundary value problem according to the reladon (2.7) by

¢() =1 v(p, DG@ L, -1 u@) 3 v DL (peD), (210)

and, again using the jump relations, one sees easily that

¢lr=u, (2.11)

which is a direct relationship between the solution of the boundary integral
equation and the boundary values taken on by the solution. As we will see below
when we consider the optimization problemn, it is particularly convenient to have
this formulation since the cost functional involves just the trace of the solution of
¢ of (2.1) on I'. Such a direct relation does not obtain when one uses a layer
approach in which one assumes that the solution ¢ has a representation as a
single layer,

#(p) = f w(@)¥(p, 9) A5,

and then uses the boundary condition and jump relations to obtain an integral
equation for u.

With the aid of these jump conditions, we have proved the unique solvability of
the boundary integral equation (2.9). Specifically, we may state the following
theorem, referring to Angell er al. (1986) for the proof.

THEOREM 2.2 Let I' be Lyapunov of index 1 and belong to the Maz’ja class. Let
G € C(I). Then the integral equasion (2.9) has a unique solution in L*(I').

Remark. In fact, using a standard argument, the soludon whose existence is
guaranteed by this last theorem can be shown to be continuous since G € C(I).

3. The optimization problem

Let L={peR’:|p|=1} denote the surface of the unit ball in R* and let
CHY(I3) denote the space of continuously differentiable functions whose first
derivatves satisfy a Lipschitz condition and which is equipped with the usual
Holder norm []-|l;; (see e.g. Colton & Kress, 1983). We will assume that we are
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given a family of surfaces which can be described by C'*! parametrizations,
N 3. - . P—PpPo
I()={p € Rip =/ @) +po, 5 = L2L2], 6.
{2 = pol
| where f:I;—R? is an element of CMX(J;) and po e R? X (=4 + €, =€), Let a
§ _ and b be two positive constants and define the subset %, , = C'}(I5) by
Far = {f € CHH(L):
g 1flla b, f(B)P +PoeR X (=h + €, ~¢€0), f(F)ma (Fely)). (3.2)
R
[
g_ Deranmion 3.1 A swiface S in R® will be called admissibie provided S can be

e described by a parametrization { ¢ %, , and S is contained in the Maz’ja class (cf.
; Theorem 1.1).

. Note that, since each admissible surface is completely determined by the
function f, we will henceforth simply refer to ‘the surface f°, aithough, when
convenient, we will use the notation I'(f). Clearly, each admissible surface

! describes a surface bounding a bounded region which contains a ball of radius ia
: .i and centre pq i its interior (see Fig. 2). We will, when necessary, denote the
R region in the domain R? X (—h , 0) exterior to an admissible surface f by D; and
the interior of the surface by Dy.

Now we limit attention to a compact subset U,, of the class of admissible
surfaces. Since the embedding C*(15)— C'!(I3) is compact, we may choose U,, to
be a closed subset of functions in C*(I3). This particular choice leads to a
nonlinear optimization problem over a closed convex set. The convexity will be
advantageous for subsequent numerical considerations. We note, however, that
the subscquent results could be achieved using any compact subset of the class of
adinissible functions.

We now wish to consider a famiy of boundary value problems of the type

o e 2
Fig. 2.
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discussed in Section 2 which may be considered as indexed by U,q:

A¢(p)=0 (peDy), (3.32)
g¢+k¢=0 ony=0, (3.3b)
ﬁ = -

n 0 onys—h, (3.3¢c)
20,

n G on I'(f), (3.3d)
3

- kot = oo™ (3.3¢)

Note that, because we are cousidering a family of boundary value problems, the
data G in (3.3d) must be defined throughout the domain formed by the union of
all admissible surfaces. This is indeed the case for heaving motion, where
Gm—-fi P

With this understanding, each choice of surface f € U,4 gives rise, according to
Theorem 2.1, to a potential ¢ = ¢(p;f), with p e D. Denote the trace of
$(p; ) on f by

& B) = ¢(fB)F +poif) Fel). (G.4)

The class of optimization problems that we discuss below involves a functional
defined as follows. Let L:C(I3)~R be continuous and note that, since
¢;(;7) € C(I5), this fanctional may also be considered as a mapping from U,q into
R by restricting the domain of L to {¢, € C(Ig):f € U,s}. In this sense, we define

L{f]:= L(¢y): U= R. 3.5
We seck a function f, € U,4 such that
L{f]sL[f] forall feUy (3.6)
or
Lifp)= L[f] forall feU,. 3.7)

We will confine our discussion to the problcm of minimization. This is sufficiently
geperal since the problem of maximizing a functional L may alw'ay" be replaced
by that of minimizing —L.

Specific forms of the functional L of (3.5) may be chosen to reflect desirable
design criteria. For example, as mentioned in the introduction, one may choose L
to represent the added mass of the hull. In this case, the problem of interest is
that of minimizing the functional L in order to reduce the hydrodynamic force on
the ship hull, a goal of obvious importance to ship design. Indeed, it is well
known (see Wehausen & Laitone, 1960: pp. 563-7) that the added mass of a
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particular hull may be represented by

3
Mo=Re [ $(p) o (p) T,
Ty np

where Re stands for the real part of the integral. This form, in light of the
boundary condition (3.3d), leads to the functional

L{f]=Re f #0: )G GV +po);(5) AT, (3.9)

where J, is the Jacobian of the transformation p = f(5)f + po, and dlg=d9 d¢,
with A and ¢ the spherical polar angles of the point §. We remark that, if we can
show that the map f -+ ¢(+; f) is continuous as a mapping from U,4 to C(I3), then,
regardless of the particular form of the functional L, its continuity together with
the assumed compactness of U,y will guarantee the existence of an optimal
solution.

More generally, we may consider the functional

7
L= 2 uum,, (3.9)
L=t
where

o
my = pJ;‘ ¢,51- ¢ drl (¢Gj=1,.,7) (3.10)

are the components of the added mass tensor, the u; (i =1,..,7) represent the
velocity compouents (assumed given) of the body, p is the density of the fluid,
and each ¢, represents a velocity potential of a rigid-body motion with unit
amplitude in the absence of incidant waves (see Newman, 1977: pp. 287-8). We
remark that, while this functional is quadratic in the u;, it is not quadratic when
considered as a functional of the surface I'. Introduction of this functional permits
optimization with respect to combinations of the added masses, perhaps omitting
some, but does not change the analysis below, since it is trivial to rewrite the
functional (3.9) in the form

d
Ldpfr¢5'—1¢dl“ (3.11)

for ¢ =Ll.; 4@, the harmonic function ¢ satisfying all required boundary
conditions.

Angell e al. (1986) proved the continuity of the mapping f~ ¢(=; f) from Uy
to C(I;). By introducing the functions

$B) = o(f(B)F + po), ' (3.12)
G (B) = G(f(B)P + po), (3.13)

and kemels
3
4@, 9):= 5 v(f@IP + Por F@T+ Py @), (3.14)

by (B, §):=y(fB)P + Po, F(§)F +Pc))(3), (3.15)
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the integral equation (2.9) may be rewritten as
#0)+ | 46 Dé@an=| Ho.DG@a  Gig

The integral operators A, and B, defined by the kernels a; and b, are compact
operators on C(lg), a fact established in Angell e al. (1986).

The basic results are the following theorem and its corollary which we will use
in the next section.

TueoReM 3.1 Let B(C(L;)) denote the space of bounded linear operators on
C(Iy) equipped with the uniform operator topology and assume that the map
f—G; from C\\(I;) into C(Iy) is Hélder continuous. Then the mappings f— A,
and f — B, of C*(I3) into B(C(L;)) are Holder continuous. Moreover, since the
set Uyy is compact, the map f— ¢(=; f) of Uy into C(I3), where §(*;f) is the
unique solution of the boundary integral equation (3.16), is Hélder continuous.

The continuity of the mappings f — ¢(+; f) and f— Gy lead immediately to the
result that the optimization problem defined by (3.6) has a solution. For the
particular case of the added mass functional (3.8), which is the functional we will
concentrate on in Section 4, we may state the following corollary to Theorem 3.1.

CoRroLLARY 3.1 Under the hypotheses of Theorem 3.1, the funciional Li-}]
defined by the equarion (3.8) is continuous as a map from Uy into R and
corsequently takes on its absolute minimum on the set U,q.

4. A pemalization method

With the groundwork in place, we turn to the main results, the development of
a constructive procedure, a penalization method, for sinding approximate
solutions of the optimization problem described in Section 3. For the sake of
definiteness, we will formulate the procedure in terms of the specific functional
(3.8). It will become cle:r that the method is applicable to a wide class of
functionals of which (3.8) is but one example. Such methods have been applied
by others to systems governed by partial differential equations (see e.g. Lions
1971, 1972). Generally, they involve the introduction of additional terms to the
cost functional involving both the partial differential operator and the various
initia! and boundary conditions. Here, we propose to carry out the minimization,
not over an entire Sobolev space as in earlier applications, but over a compact set
of functions whose traces on the class of admissible surfaces serve as boundary
data for exterior solutions of the boundary value problem. With this approach,
we will need to introduce only one penalization term corresponding to (3.3d).

We will then turn to the development of a Galerkin-type procedure based on
the use of complete families of solutions. Siements of such a family are harmonic
functions, defined in the region (R? X [~k ,0])\B,,, where B, is a ball of radius
4o < a, satisfying not only the boundary conditions (3.3b) and (3.3¢) on the free
surface and bottom respectively but also the radiation condition (3.3¢). The use
of complete families not only simplifies the form of the cost functional but aiso
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offers the significant advantage of allowing us to avoid the difficulty, commorn in
numerical procedures for inverse problems, of having to solve a succession of
direct problems as an cssential step in an iterative procedure. The method given
here, once the dimesnsion of the approximating subspace is fixed, produces both a
suboptimal surface and the appropriate field exterior to that surface.

We will proceed in three steps. First, we will set up the penalized problem in
the infinite-dimensional setting. Second, we will stuy the finite-dimensional
problems generated by considering subSpaccs spanned by finite collections of a
complete family of solutions, and proving convergence of minimizers of the
finite-dimensional problems to a solution of the original problem. Finally, we will
show how such a complete family may be obtained so that the procedure may be
implemented.

Let A denote the closed annular domain E,\B, lying in the strip R? X (=4 , 0)
which is determined by the spheres B, and B,, where a and b ars the constants
appearing in the definition of the class &, ,. Thus all the admissible surfaces I} lie
in A. We will assume, in concert with the remarks following equations (3.3), that
there exists a function H € C*(4,) (i.. C? in an n-neighbonrhood of A) such that
8H/3n =G on I; for each f € Ua

Let M be any constant satisfying (|#||cx,) < M and define

Su = {F 6 C(A):||Fllcxa,y < M}, (4.1)

where ||+]lcxa,) is the usual Clnorm. Since the embedding C*(A4)-»C'(A) is
compact, Spe is relatively compact in C'(A). If we deuote its Cl-closure by S, then
S is compact in C'(A).
For every F e S and f € Uys, we can coasider the boundary value problem with
boundary data
aF
5 o I;. (4.2)
By Theorem 2.2, the corresponding integral equation (2.9) with G replaced by
dF[dn has a unique solution u,r, Which can be used w0 generate a unique
solution ¢y, to the boundary value problem by using {2.10). This is true, in
particular, for F = H.
We now introduce three functionals /y, /2, and L, defined on the compact zei
U xS by

2]
W(f, Fy=Re [ 01.e(p) 55 Fp)or 4.3)
!

and

2

n =l

, (4.4
LX)

while, for a given v >0,

L (f, F) =L}, F) + via(f, F). (4.5)
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With the usual reparametrization, this expression can be rewritten in terms of
integrals over Ig:

L0, F=Re [ dr(p) o= F(p)

/1y

Jr (@) dls

P=po+f(4)§

v
I

3 2
5 F@)=Gp) (@) 4. (4.6)
P=nu+/(§)M

The functional /; is intended to ensure that F is chosen to approxirnate the given
data, while /; ensures that the added mass is minimized. Indeed /; can be viewed
as a penalty term which penalizes deviations from the d=«ied boundary condition
on the surface f. Using arguments completely analogous to those uscd to prove
Theorem 3.1, it can be shown that both /, and /; are continuous on U, % S, and
hence there exists a pair (f,, F,) € Uy X § such that

Lv(fw Fv) ‘Lv(fn F) for all (f, Fle Uhd X.f.

We note that, if we consider an increasing sequence of penaiization parameters
{v,.} such that v,—>% as m-, the comesponding sequence of optimai
solutions will contain at least a subsequence {(fx, F)} which will converge to an
element (fi, B) e U XS. A standard argument (see e.g. Luenberger, 1969:
p. 305) shows that, in fact, (fo, ) is & minimicer for the original optimization
pioblem (3.6), so that 8K/Sn = G.

As it stands, the functional (4.6) suffers from the drawback that there is no way
to associate the added mass with a particular surface without first solving the
direct problem for ¢y r. We now propose a Galerkin-type approximation method
which eliminates the need for first solving the direct problem. In fact, if the
dimeunsion of the approximating subspace is fixed, then the approximate solution
of the minimization probleni is cbuained by simultancously solving for F and the
optimal surface without requiring the solution of a succession of direct problems.

The approximating subspaces will be defined in terms of a countable family %
of harmonic functions defined as follows. The elements v; of & are harmonic in
(R?x [~k ,0])\B,, and satisfy conditions (3.3b), (3.3c), and (3.3¢), and the
normal derivatives {dv,/8n|p)}i-1 are linearly independent and are complete in
LA(I'(f)) for all f € Ups. We will show one way to construct such a family at the
end of this section. Postponing that analysis, we begin the description of the
approximation procedure by establishing a convergsnce resuit which we will use
in the proof of our main result. We remark that the completeness of the family &
allows us to approximate any function in L*(I'(f)) as closely as desired with a
finite linear combination of the normal derivatives Sv,/8n. Even more is true as a
consequence of this choice of the functions v, as harmonic funstions. This
additional approximation result is described in the next statement in which I'is a
fixed surface.

Lemma 4.1 Ler GelX(I') and let ¢ be a solution of the system (3.3) with
8¢/0n =G, Let {u;}in1 be the complete family of harmonic functions as described
above. Suppose that, for each integer N> 1, the coefficients {c|:l= 1, 2,., N}
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are chosen so as to minimize ||Liw, cf¥(3vi/6n) — Glivyr. Then

N

lim |3 cfMu,-- ¢ =0, (4.7)

X Nt /] LM
ﬁ. where ¢ & the solusion of the integral equation (2.9).
B Proof. Since ¢ and v, (I=1,2,...) are harmonic and satisfy the radiation
ﬁ condition, Green's theorem yields the relations
¥ _ :
Y . du
{ -+ Riui= [ 70, ) 32 () dr,, (48)
5 . "

U+ Ri)e= [ vp. )G() e, (49)

K} being the double layer operator associated with the surface I' (see (2.7)~
(2.9)). We may conclude immediately that, since the integral equation (2.9) has a
unique solution,

MWW an R .
2 My = p=(I+ KD f}*(p. q)(z cf ’5—(61)--0(41)> dr,. (4.10)
1 r Iw] n

Moreover,
& N 2wy =1 & ~ 29U
S cu—o| <10+ RN oo ISA S e -6] . e
lm1 L) Iy n XN

where S;- is the single layer operator associated with I'. The result follows from
the boundcedness of the two operators and the completeness of the dv,/on.

The elements of the family ¥ individually satisfy the free-surface condition, the
radiation coundition, and the boundary condition on the sca uoor, while their
normal derivatives are cowmplete and linearly independent on L*(I'(f)) for ail
J € Uy, This makes them useful, not only in approximating solutions of the
submerged body problem (3.3), but also in formulating a sequence of approxi-
mate optimization problems.

To this end, it is convenient to introduce the subspace V¥ < & spanned by
the functions v, ¢ & (1 =/« N). We then consider the set SV = V¥ N §,,, where
Sy, is defined in (4.1). In terms of this set, we may define an approximate inverse
problem as follows. For a given integer N and function G, find we S¥ and f ¢ U4
which together minimize

3
LEf, W)= Re [ @r.u(p) 5 w(p) GRS
h n pepo+f(§)q
3
+v[ | wip)-Gip) @) 4%,
L lon P=pu*f (@

The question iminediately arises as to how the solution of the approximate
optimization problem is related to an optimal solution of the exact problem. As
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the following result shows, the cluster points of optimal solutions of the
approximate problems are solutions of the exact optimization problem.

THEOREM 4.1 Let

LS :=min {L[f, F]: (f, F) e Uyx 8},
LM e min (L[S, @) (F, D) € Upg X SM).
Then, for fixed v, limy—o LV = LY. Furthermore, if f is an optimal surface for

L™ with corresponding optimal &, then every cluster point of the sequence
{fM, @) in CH*(I) X C(A) is optimal for L,.

Proof. Suppose that {f,, ®,} ¢ U,y x § is optimal for L,, so that LI = L.[f,, &,],
and let (fS, @9 be a cluster point of the sequence {(f¢, ®M)}%a in
Ch(I5) X CY(A). Thus there is a subsequence {(f (™), &™) }%., which converges
to (f9, @9). By continuity, we bave

lim L.(f M0, PPy m Lo(f0, §%) 3 LY = L(f .).

7ish to show that, indeed, L.(f%, #%) < LY.
Note first that siuce (FM), M) is optimal for L"), we bave the estimate
P

LMo, oMy & LW(F,, W) for all W eS™,

Hence
LS,N')(ftN'); cp(an))

,
<Re .(m«,, gy 4T + VU%?° e
‘jrd.) 197 ¢ %%f—%% drda + jr(i.) faif_"' v~ .8l
- = o = 2
*Re i) #2.5. %% ar{) + v(”%g’_%:_:! (rdn) * ‘%%“ L(r V‘v’))
<( fr N 1¢;",,i’dr(fv))i( fm %:—:r-l - %‘% 2 dI‘(fQ))i

([ [ a0 ([ o eetaris)

2 2

o ad, . . Naw ad, ad,
+ Re 5, dI'(f,) + ¥| |———— — =G )
S V2é T U5 o wrgy) I on L)

2

< C"ﬁ".‘_‘.’ _52,

oy _20 dr(fv)) 107, = B3 8.6

(o
L{rd.)

+ Rcf ¢7.5, 293 dl‘(f,) + v(
r¢,

rghy

2 2

3v_ad.
on on

8®,
én

an

for suitable constants C and M.

+| )
Ly{rdh)) L{(rd.y)
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Choosing W= P ¢ 5 5o that 9% ™)/3n best approximates 3P,/3n, it
follows that
aq‘/(m) a@v H

}l_r.n. )l on on

=0,
LY(rd.)

while, from Lemmma 4.1, we also have

k—vu Jp

lim i 7,6 — 923, I (F,) =0.

It follows that

o®, |?

I +0(1)

8D, . .
LERGLD, @) <Re i) 9% 5'_5;(1”}1") Ty w(r@

= Lv(fw ‘pv) +o(1),

where 0(1)—=0 as k~ . Since LM, @My m L (fM), $™), continuity
implies that

Lv(fg't dj?l) < Lv(ﬁn d.)v):

which completes the proof.

Finally, we address the question of the construction of a complete family of
solutions. Recall that the class of admissitle surfaces is defined in such a way that
all contain a ball of radius 4a, centred at the point p,, for some praassigned
constant @ > 0. Certainly we may consider a surface [, strictly interior to the
surface of the ball Ij,. We may then prove the following result.

THEOREM 4.2 Let {¢,,};'-, be a linearly independent family of funcrions that is
complete in LX(I,)). For each n, define the function u, by

n(p) = fr VP @) AT, for p €RNDS,

Then the funcrions
un(p) = (3un/3n)(p) forpel(f), n=1,2, 4.12)
T2 s

form a complere linearly independent family in LY(I(f)) for all f € Upa

Remark. By linear independence of these countable families we mean that any
finite subset is linearly independent.

Proof. Consider the family {v,} < L*I'(f)) aud suppose that there is some
¥ e L3(I'(f)) such that

02('{/' U")Li(ru)) for a“n=l,2,"'.
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Then, recognizing that I'(f) N I, = O,

5 _—
0= (v )ueun=[ @)z [ 7o ) ar) ar,

- ([, ¥@r5 e 0 a5)a@ ar,

“| e o@dan,

= (Wri) ¥, @adiuny:
where Wr(, is the double layer operator defined implicitly above with the
property that Wy, : L3(I'(f)) = L*(I%,) and that the set {¢,} is the complete set
LX(I,). Thereforc Wr¥ =0, and hence Wy, ¥ =0, on I3,
Now consider the function uy, defined in D7 by

uulg) = J; w;‘}v(p- q)¥(p)dr,.
(4

Then uy is harmonic in D;. Moreover, in the region D, i.c. in the region
interior to I, 4y is harmonic and uy|r, = 0. Thus 4 vanishes everywheie in D,
and hence, by analytic continuation, everywhere in Dy But, since uy= Wr ¥,
we have, using the jump conditions,

N

The results of Saction 2 guarantee that the only solution of
(I + k;g))u - ()

is the trivial solution, so we conclude that ¥ = 0. This e:tablishes completeness.
To establish that any finjte subset of the v, is linearly iudependent, suppose,
without loss of generality, that there exist constants ay ..., ay such that

N
> au=0 on I'(f).

=1
Then, by definition,

X 5y
0= § @, = _8;2‘. a.'J:;. (P 9)$i(q) dI,,
] N
=~ J; KL q)l‘E‘1 ®¢i(q) dlg

3
’;f ¥(p, q)w(g) drI, for p e I'(f),
n o

where w(g) = TN, a,¢,(q).
Now, for p e D, i.c. in the exterior I, define the function v = v(p) by

u(p)= f, _Y(p, qIwiq) Al = S, w.
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Thus certainly v is harmonic in DZ, and, in particular, is harmonic in Dy,
Moreover v satisfies the radiation condition (3.3¢) and the boundary condition

9 v
on ry)

==0'

and so v is a solution of the exterior homogeneous Neumann problem. By the
uniqueness theorem, v vanishes identically in D and so, by analytic continua-
tion, also vanishes in the region exterior to [,. Hence, again using the jump
conditions,

)
0= lim =S, w=(/+KJw=0,

pTd
wheye

(K )(o) = | X (5. 9IW(0) 4I

But (/ + K%)u =0 is uniquely solvable, so (I + K, v =0 is also uniguely swivable
by the Fredholm alternative. Thus, given (I+K,)w=0, it follows that
(I +R)%=0, and so W vanishes on I,. Therefore, so does w. From the
linear independence of the {(ﬁ,}ﬁl, we conclude that all the coefficients a;=0
(i=1,.,N), and this shows that the corresponding functions v, (i=1..,N)
are likewise linearly independent.
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THE CONDUCTIVE BOUNDARY CONDITION FORk MAXWELL'S
EQUATIONS"

T. S. ANGELL! AND A. KIRSCH?

Abetract. First, the conductive boundary value problem is derived for the quasi-stationary
Maxwell equations that arise in the study of magnetotellurics. Then the boundary integral equation
method is used to prove the exastence &7 2 igueneas of solutions of tiae problein, The final section is
devoted to a study of the set of far field patterns fo: scattering problemr with plane wave incidence.

Key words. Maxwell equatiors, boundary integ:ai equations, scattering theory
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1. Introduction. Geophysicists, in their study of electromagnetic induction in
the earth (callea magnetotellurics) commonly use a boundary condition for the elec-
tromagnetic Seld, which is often referred to as the conductive boundary condition. We
refer to Schmucker [16] or Vasseur and Weidelt {19] for the physical explanation of
this boundary condition. This boundary condition models the cccurrence of a thin
layer of very high conductivity ivr, while it is well known that the electric field does
not penetrate into an ideal condustor of positive thickness, such a field certainly will
penetrate intc the medium beyond that conductor if the latter is infinitely thin.

The analogous boundary condition in both the electromagnetic and acoustic prob-
lems have been known for some time; see, e.g., Harrington and Mautz 6] or Senior
[17]. In this context, the conditions have beeu considered as approximations to the
full transmission conditions. The wellposedness of the boundary value problem in the
scalar case has only recently been treated by Hettlich (7] and Angell, Kleinman, and
Hettlich ({1]. In this paper, we employ the technique of boundary integral equations
to discuss the existence of solutions to the electromagnetic conductive problem.

The use of integral equatiors in problems of acoustics and eleciromaguetics is a
well-known technique; a current account of the method may be found in Coltcn and
Kress [4]. For the prr ‘em of seattering of time hariaonic electromagmnetic waves by a
perfectly couducting object, the method was applied at least as early as 1949 by Maue
[13). Miiller [14] used the method in 1951 to treat the electromaguetic transmission
problem. As the classical transmission conditions are a special case of the boundary
conditions of the problem discussed bere, and our surfaces may be less regular than
those of [14], the present work may be coniidered as a generalization of Miiller's
results.

Without attempting to give an exhaustive 1eview of the literature on integral
equations in electromagnetics, we mention that various aspects bave also been treated
by Weyl {22], Saunders [15], Calderon (2], Werner [20], {21], Knauff and Kress [9], and
Gray and Kleinman {5]. More recently, Marx {11}, [12] has developed a single equation
for electromagnetic and time-dependent scattering problems.

In §2 we derive the conductive boundary condition from the quasi-stationary
Maxwell equations for induction problems in a layered half-space. This is the situation

* Received by the editots March 26, 1990; accepted for publicazicn (in revised form) November
12, 1990.

! Department of Mathematical Scicoces, University of Delaware, Newark, Delaware 19716. This
author was supported by Air Force Office of Scientific Resesrch grant AFOSR-91-0277.

! Institut fiir Angewandte Mathematik, Universitit Erlangen-Nimmberg, D-8520 Eriangen, Ger-
many. This author was supported by Deutsche Forschungsgemeinschaft (DFG® grant KR40/ 1.
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of magnetotellurics. In §3 we consider the model problem where the anomalous region
of conductivity is embedded in a homogeneous “full space.” We will prove uniqueness
and existenca results for classical solutions.

We devote §4 to the description of the far field patterns for scattering problems
whose incident felds are given by plane wave solutions of the Maxwell equations. We
prove the reciprocity principle and vse this result to show that the class of all far field
patterns corresponding to the incident plane waves of any direction and amplitude is
dense in L%.(S?), the space of all L*-tangential fields on the unit sphere $2, provided
that the pair (k;, kg) of wavenumbers is not an eigenvalue of a related eigenvalue
problem.

2. Physical derivation of a conductive boundary condition in magne-
totellurics. We model the earth as a layered half-space filling the region z3 > 0.
The conductivity o,, (normal conductivity) of the earth is assumed to depend only on
depth =3 and to be piecewise constant.

A bounded region 2 (anomalous region) is imbedded in the half-space z3 > 0. The
conductivity o, in Q is different from ¢, and is allowed to depend on x = (z;, Z2, Z3).
Furthermore, we assume that §2 is covered by a thin layer with very high conductivity
o} = of(x), such that the integrated conductivity

7(x) 1= ‘Ex& of(x + ta(x)) dt, x € 99,

remains finite, i.e., o;(x + ta(x)) = 7(x)8(2). Here we denote by n(x) the outer unit
pormal vector at x € 811,

We now assume that some kind of sources in the half-space z3 < 0 (e.g., in the
ionosphere) induces an electromagnetic field E, B in the earth z; > 0. Here E = E(x),
and B = B(x) denote the spacial parts of the electric field Z(x)e~** and magretic
field B(x)e~**, where w > 0 denotes the frequency. Then X and B satisfy Maxwell
equations in #3 > 0. We formulate them in their quasi-stationary approximation
although this is not necessary for the mathematical theorv, as follows:

(2.1) curl B = uy0E, cwl E = iwB,

where ¢ is the conductivity (¢ = o, for x ¢ 2, ¢ = 0, for x € Q) and yo the
magnetic permeability in vacuum. Using SI units throughout, we measure E in V/m,
B in Tesla = Vs/m?, ¢ in A/Vm, win 1/s, and uo = 4710~7Vs/Am,

To derive the boundary conditions, let the layer with conductivity of be of finite
thickness € > 0. Let C be a C2%-arc on 00 with unit tangential vector ¢(x), x € C,
and

A

§= {kﬂ-yu(l)ixﬁc,lil <t}

the surface perpendicular to ¢ with boundary 3S.
For x € C, let v(x) = n(x) x £(x), where a xb and a- b are mean vec’or products
and scalar products, respectively. Then the Stokes theoiem yields

(2.2) /E-d.t:: u-curlEd3=z'u/u-BdJ
a5 ) S

and
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(2.3) /853-&=J4u-mlnda=po/;afy.1~:da
+¢
=p0/c/i¢ of(x + ta(x))v(x) - E(x + tn(x))(1 + O(e)) dt d(x).

For ¢ — 0, we conclude from (2.2) that [(E4 ~ E.) - df = 0. Here E.. denotes the
limit of B from the outside (4-) and the inside (—), respectively. By the mean value
theorem for integrals and with ¢ — 0 in (2.3), we arrive at

/(B+—B.,)-d£=po/ rv-EdL.
C c

This holds for every ars C; thus

nxEl.~-nxE|l. = 0 ondf

(2.4) uxBli-nxBl- = pr(axE)xn ondd.

It is the aim of this paper to study (2.1), (2.4), together with a radlation conditicn
for the “anomalous” parts of E and B for the special case of a homogeneous region
in & homogeneous full-space (i.e., o, 2nd o, are constant).

Thus let us assume that o, and ¢, are constant. First, we symmetrize (2.1)
and define kf = iwpuooa, k3 = iwpgow such that Lmk; > 0, j = 1,2, and H =
(w/k1)B in , H = (w/k2)B in R3\ {I. Then we see that (2.1) takes the form

(2.5) curlH = ~ikBE, cwlE=4iH i R3\09,
with
Ha={ 4 BRa
The boundary conditions (2.4) change into
(2.6) nx Bl -nxEl_-=0 ondf,
n x [n x (ksH|,. - kiH|.)] = porwn x E  on 86,

3. Uniqueness and existence of solutions for a model problem. We now
focus on the main problem of this paper. Given an open and bounded region 2 ¢ R®
with C2-boundary 8, numbers ky, k, 41, p2 € C\ {0} with Imk; >0( =1,2), a
complAex-va.lued function 8 € C**(89), a direction d € §2, and an amplitude p € C?
with d - p = 0, find vector fields E,H € C1*(R3\ 6Q) N C', which satisfy
(3.1) curlE~ikH =0, curlH+ikE=0 in R®\8:

nxXxEl.-nxE|_.=0 ondQ

29
) pmx(pxH)e—-pmnx(nxH)..=08mxE ondd;

(3.3) E(x)=E'(x)+EBE*(x), H(x) = —l-rurl E'(x) + H*(x), x¢,

with incident field E*(x) = pei*ad% and where the scattered fields E* and H* satisfy
the radiation condition

(3.4) l%t-le'(x -i-E‘(x)--'o(l |> [x] — o0, uniformlyinﬁesz
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with k = k, in 2 and k = k; in R3\ {1 Likewise, we will set g = u, in 2 and u = ug
in R\ Q.
Here we have used the following notatiounal conventions:
(i) C%=(89) denotes the space of Hilder continuous functions on 852 of order
a € (0,1) (the space C*(80) is defined analogously);
(i) C'={EB:R3\ 80— C? : E|g e C(}), Bl € CR3\ )}
(1) F{4(-) denotes the limit of ' on 6 from the exterior (interior);
(iv) n(x) denotes the outer unit normal vector at x € 82, and ax b, 2. b are
the vector products and scalar products, respectively.
The situation discussed in §2 is covered by setting

k? = WO a, k.g = iWUQTn, (Ima kg > 0, Im kg > 0),

pi= ki (4=1,2), B=uwuer Hti;:-B‘

THEOREM 3.1 (uniqueness). Let the parameters of the problem satisfy the follow-
ing relations: .

(3.5)

(3.6) Re(f;) > 0 on 02, T (k;ﬁ) >0, Im (‘Eﬁi) <.
2

Then there exists at most one solution (E, H) of problems (3.1)~(3.4).
Proof. Let EY = 0, i.e., (B, H) satisfies (3.1), (3.2), and the radiation condition
(3.4). We use Green's theorem for vector fields in 2 ay follows:

f(E-AE+cur1E-me)dx= a- (B x curl K) ds.
19} om

Then, with curll; = ik;H and AE; = ~47E, j = 1,2 in Q and Sy, respectively,
Qp = {z € R%\{3: |x| < R}, we may add and use the boundary conditious to obtain

/ (a7 (~F IR + KE) dx
(3.7) Ix|< i

=-~.‘/ Bln xEffds— iy | ne(Ex H)ds.
&1 |x[R

From the radiation coundition integrated over the sphere of radius i2, we ses that
/ (o x HE + [E)ds - Re [ - (B x H)ds
|x|=R x|z
- / laxH+EPfds=o(l) for it — oo,
|x[=R

and, by dividing (3.7) by ji; aund taking the inaginary part,

Tun (kg | dx ~ f Tun (4s/ (o)} JRELP dx
Ixl<R x| R

= _/ Re (8/12) In x B|*ds ~ ;/ (n x HI* + [BR) ds -+ o(3)
[4:93 x

{xf2 &

for R -+ oo,
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From (3.6) we see that Im (uk/ug) 2 0, Im (ut/pak) < 0, and Re(A/p;) 2 0 on 61
This implies that

(38) Im(uk/pz)E=0inR3*\6Q and |E[?ds = 0 (R — )

|x|=R
If Im ky = 0, then, from Rellich’s theorem (cf. [4]), it follows that H = E = 0in R%\Q
If, on the other hand, Im ko > 0, then the identities H = E =0 in B3\  follow from
the first identity in (3.8). In either case, n x E|_ =0 and n x (n x H)|- =0 on 802
which implies, by the representation theorem, that E = H = 0 throughout {2, and
the proof is complete

We remark that, for the physically relevant situation described by relations (3.5)
the uniqueness assumptions (3.6) ave satisfied, as is rw.dxly verified.

Now we assume a layer ansatz and use the integral equatlon method (see [10]
for some related boundary value problems) to prove existence of a solution to our
model problem (3.1)-(3.4). First, we define the scalar three-dimensional fundamental
solution corresponding to k; (j = 1,2)

e‘kj Ix=y|

®;(x, X#y, Jj=12

dn|x ~y|
and set

Bi(xy) Ex€Qyeon
®(x,y) {«:»;( Y) ix¢fyeon

k ifxeQ _Jm xfxeﬂ
k(x) {kg if x ¢ () {uz if x ¢

‘We make an ausatz for E*, H* iu the form of a sum of electric and magnetic dipoles
distributed on the boundary surface

Ef(x) = k(x) curl/ y)®(x,y)ds(y +cur12/ b(y)®(x,y) ds(y)

(3.9)
H'(x) = -:-’Ecurl E’(x)

in R3 \UQ where a,b € C3* = {c € Cy? : Dive € C%*(99)} with C‘(J

{c & COa C3) : n-c=0on 2} are u.n.known vector fields, By Divc, we denote

the surface. dwergence ofce C° '* (cf. (4, p. 60 for & definition).

From the prope:ties of @,, we sec that (E*, H’) satisfies the Maxwell equations
(8.1) in R3\ 8Q and the radiation condition (3.4). By standard arguments (cf. [4
§2.6], we can show that E* aud H* belong to C’

The tangential components of E* and H* on 84 take the form

nxE"|y =k;

_n-}-n)(-/ curlx(n‘P,)d-’(}’)]

-+nxcur1“/ bd; ds(y) x e a5l

n x H?|y. = -k~‘- [:l: b-i-nx/ curl, (bd;) ds( )]

+ =2 x curl’ / ad;ds(y), xe€oRQ,

1
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the upper sign + and number j = 2 corresponding to the Lmit from R3 \ 1, and the
lower sign — and j = 1 to that from the inside . These jump conditions follow from
that for the curl of the single layer potential, which is proved in {4, Thm. 2.26].

The boundary conditions (3.2) for E' and H’ lead to a system of integral equa-
tions on &1 for the unknowns a and b. Before we write them, we introduce the
following boundary operators:

(9b)(0) = () xb(x),  x& 0N,
(M) =06 x [ cul R y)dly),  xes j=12

(P;b)(x) = n(x) x curl? /mb(yw,-(x,y)da(y), x€8Q, =12
Then (3.2) leads to

(3.10) :-13(».-1 +k2)a + (kaMz — ks Mi)a+ Psb — Pib = 0,

k k1 \ 1
(I‘z 24 45 b + Wk QMy — 1 Q)b

(3.11) 2"1 1
+7QueP —mPila-p [—:,Z-km + k1 Mya + P;b] =d,
where
d(x) = (43 — p2)u(x) x [n(x) x (d x p)eikg&-x]
(3.12)

+8(x)n(x) x pe*1d=,  xe80.

Thus we have the following thecrem.

THEOREM 3.2. The vector functions a,b € Cg® are solutions to system (3.10),
(3.11) with d given by (3.12) if and only if the fields (E*, H*) from (3.9) solve the
boundary value problem (3.1)-(3.4).

To discuss the solvability of (2.10), (3.11), we write them in matrix form as follows:

(3.13) (L+K)(;> - (g)
where
( Xk + k), 0 \
L=ty 2 B, « f
\ '{Q (paPy — i Pr) + —é‘-’, §;Q - A }

kaMa — kM, P—-P
K = :
=Aky M, ;(l‘ﬂczQMz - u1k QM)

and a = kju1 + kouz. We treat this equation in the spaces
L+K:CH xCy* — Ch* x C2°.
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It is kmown that K is compact between these spaces (cf. [4]) and that L is well defined
and bounded. .

Qur aim is to apply the Riesz theory for compact operators; we first show that
a certain compact pecturbation of 3 aQ ifP, is an isomorphism fom C%" onto
C2“. Then L is an isomorphitm ﬁ'om C%* x C™ onto CH™ x C2®, provided that
k1 + ko 5% 0.

LEMMA 3.3. Assume thai k is not an eigenvalue of the boundary value problem
curl E - ikH = 0, curl H + zkE 0in§, nxE =0 ondQ, which therefore admits
only the irivial solution E = 0 in Q. Furthermore, let a3 0 und let k, B satisfy
Re(kB/a) > 0 on &2 Let 3(x, ) = c""l"""/(47r|x—yl) aud let B, M be the operators
Pa, Ma, where o is replaced by 3. Then 1‘QQ - 1ﬂP+aQM is an isomorphism from
CY%* anto C2°.

Proof. (i) Injectivity. Let b € c"*"(an) with fon x b - iAPb +an x Mb = 0
on 8. Set E(x) = curl® [, b(y)&(x,y)ds(y), H = (1/ik)curl E in R3 \ 8. Then
E,H e CHR3\ 80)NCEH NCER2\ ), and, from the jump conditions, we have

%nx(uxH)h—anEh:% (%nxb-’ranx A?b—iﬂﬁb) -

Thus (E, B) solves a homogeneous exierior impedance problem with boundary con-
dition
ax(axH)| -¥axEli =0 ond,

where W = kf/a on 9. Since Re W > 0, the uniqueness result in [3] implies that E =
H =0ia R3\{. Since n x E|.. = nXE|.-nxE|, = 0and we have the assumption
that k is not a Maxwell elgenvalue in 2, we also have that E:=H=01aQ, ond thus,
from the jump conditions for ux H, we conclude that b = i/k (n x H|y. —n x H|..) =
0 on 99, which shows injectivity.

(ii) Surjectivity. Let ¢ € C3*(60) and B, H € C'*(R3\ {1) N C(R3 \ Q) be tke
solution to the exterior inpedance problem

cwlB~ikH =0, ocwlH+ikE=0 R\,

(3.14) %n x (ax H)|4+ - ax Bl = -}c on 852,

which exists and is unique, ag is proved in [3]. Indeed, the prosf in [3), together
with the standard estimates in [4, §2.6], shew that E and H are Holder continuous in
R?\ Q. Furthermore, let E,H € C'(2) nC(§I) be the unique solution of the interior
Maxwell problem

cwrl B — ikH =0, cwlH + kE = 0 in Q,

(8.15) nxEl.=uxE|. ondd
and set
(3.16) b == -’]; (mxHl; —nxH|_) on df.

Then b € C3°(89), since curl H = —ikE € C%*(§1) n ¢V (13 \ Q). Moreover,
(3.17) B(q) =owl’ [ bylbxy)dsy)  xeR*\on,
<8

(3.18) H= _—ll.c-curlE in R%\ 80
1
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In fact, if By and H, dcnote the right-hand sides of (3.17) aud (3.18), respectively,
then E; and H, satisfy (3.15) and (3.16). By the abovo uniqueness argument, (3.17)
and (3.18) are satisfied. The second equation of (3.14) then reads

lcal(gnxb+anxﬁb-—iz\ﬁb) oa 61,
i i\2

which proves surjoctivity. This shows that L is bijective. Thus L~! ¢xists and is
bounded according to the open mapping principle. -

Remark. For A = 0, it is known (cf. [4]) that 4Q + QM is an isomorphism from
C3® onto {c € C¥° : Div{nu x ¢) € C®=(50)}. This shown that the assumption
Re(k)/a) > 0 is necessary,

We now apply this result to system (3.13), which can be wiitten in the forn

£(3)+#()-(2)

where

A 0 0o
L=l+ (o AP, -13)+?QM>‘

= 0 0
Kow K- (o ﬂ(PI-PHeoM)‘

Lewmma 3.3 estublishes that L iy an isomorphista from Cye(00) x C%"(&Q) onto
CLo60) x C*(512). The operator K I clemrly compsct between these spaces.
Heuce (3.19) is equivalent to

(3.20) (;)4-13-11?(;) -fﬂ(g),

which is a Fredholw equation of the second kind lu C3*'(892) x C3* (692).

To show uniqueness of solutions of (3.20), or equivalently of (3.13), we assume
that the boundary value problem (3.1)-(3.4) itself has at wost one rolution (which
holds, e.g., woder ssswmption (3.6}).

Let (2) & C3*(89) x CH*(89) be a solution of (3.13) for d = 0 on 85¢ and define

(%) = kyeurl [ aly)®;(x,y)ds(y) + el [ bly)2;(x,) ds(y)
ot an
in R\ 60

and

H(x) = ;};cu:x.\:,(x) RO\ &R (= 1,2).
3
Use «f standard potential-theoretic argiuments and the juwp condlitions then lead to
the following theorem.
THEOREM 3.4. Let ki, k3, w1, p2 € C\ {0} with Imk; > 0(j = 1,2),
prky + pigka £ 0, by 4 kg £ 0 and B € C°-"(BQ) with

B(x) )
3.21 Fe| —————k) >0
(3.21) ® (#ﬂcl + pgko
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for all z € 8Q and some k with Im k > 0. If the boundary value problem (3.1)-(3.4)
has ai most one solution, it has exactly one solution.

Remarks. (a) From the boundary integral equations (3. 10), (3.11), we sce that
the more general problem admits a uniqua solution for all ¢ € C° . de C° {under
the sume assumptions of Theorem 3.4), as follows:

cwlE~ikH =0, cwlH+kE=0 inR3\&0,

nxEl. —nx E|l. =c¢ ondf,
mouXx (dxH)|y-—mnx(mxH).=mxB+d ondQ,

» IxH(x)+E(x)=o(l |> x| ~ co.

We ses that, for A & 0, the assartiou of the theorem cannot be valid for all d € C3°,
but at most for those d € CI'® with n x d € C} (since Div(a x H) = - - curl ] =
~tkn. E € C%*(80)). This tmmmiwon problem has been conxidered by Wilde [23).
The limiting behavior for A — 0 is discussed in [8].

(b) In the physical situation described In §2, the various parameters ave related

prky + paky =k + k3 = dwpo(on +00) %0, Ky ky#0
aod
B, r69
mky + paka on + 04
For k = i, assumption (3.21) is satisfied.

4. Denseness of far Hield patterns. It is well known (cf. [4]) that the Silver-
Miiller radiation condition (3.4) implies the asymptotic belhavior

B (x) = e"p_———(li"rl"l) [Eao () + O (jxI )],

H*(x) = (ltk|2|1|) [Heo(x)+ O (|x{")] as |x| — oo

uniformly in & = x/[x| € §3, with the properties
H, =% x E, %X Boom% Ho=0 onS3
The fields By, Hyo : 52 — C? are known as the far field patterns of E, H. The

cowponents of Eoo, He, are analytic functions on S2.
Moreover, the Stratton—-Chu [18] representation theorem (cf. also [4])

E*(x) = curl fm o(¥)a(x. y)d(y) = pcurl /m h(y)®a(x, y)ds(y),

x € R3\{}, with e :=n x E*, h :=n x H’, and the asymptotic form

exp(ikg|x|)
[x|

Pa(x,y) = [e=%%*Y + O (Ix|™Y)]  for |x| = o0,
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uniformly in X € §? and y € 892, imply the representation
(41) Boo(®) = iky [sc x [ smeisvasty) +2x [ (i) x x)e-‘“'*'vda(y)] .
o o

for % € S2. This representation holds for any solution (E*, H*) of Maxwell's equations
(3.1) in R%\ {1 :

Now we take the special case of the conductive boundary value problem (3.1)-
(3.4) and denote ihe corresponding solution and far field pattern by E(x,d, p) and
Eo (%, d, p), respectively, explicitly indicating the dependence on the direction d and
polarisation p of the incident plane wave. _

Then we can prove the following reciprocity principle.

THEOREM 4.1, Let 3, p1, pua be related in such a way that the conductive boundary
value problem: (3.1)-(3.4) admits a uniyue solution for every incident plane wave (see,
e.g., the last remark of the preceding section). Then

q- ECIJ(*'I &, P) =p- Ew(""&: "‘iv Q)

forallx,de 53, p,qeC® withp - d=0,q-%=0. )

Proof. Let %,d, p, q be as indicated. Then E(x,d, p) = E*(x,d, p) + E*(x,d, p)
with B*(x, d, p) = pexp(iked « x), aud we can decompose H in the same way with
H(x,d,p) = (d X p) exp(ikad - x). Then (4.1) aplies that

;%;q : Em(iy av P) == ./;n (n X E‘(y' a' p)) . H‘(y' —i’ q) d‘g(y)

+/8r1 (n x H'(y,d, p))|+ By, —%,q) ds(y),

since q-(k xe) = e-{—%xq) and q % = 0. If (K*, H?) and (¥, G*) satisfy Masxwell's
equations and the radiation condition, Green’s formula in B3 \ Q ylelds

/w[(n X E*) - G* + (0 x H*) . F* ds = 0,
Hence, if we choose F* = E*(-, ~%,q),
T Ealhdp) = [ (0B p) - B~ a), ds
+/an (n x H*(-,d, p))l+ CE(-, -%,q) ds.

Now n x (Bl xn) =nx (E|- xn) on 80 and panx (H|4. x n) = uynx (Hj. xn) =
—fn x E|.. on §Q; thus

M3 A 3
%, 4 Ew(%,d,p)

= /m [n x E(, ao p) -—nx E'(’a,p)] . [’_“H(-,-—f\(’ q)l_ —ﬂn % E(’ _i‘ q)] ds

4-/ E(-, ~-%,q)- [um x H(,d, p)i - fn x (n x E(-.&, P))
on -

~ pon x H(-, d, p)] ds.
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Now we use Green’s formuia in {2 to find that
[ [(xEeam) m6 %l +E( -2 a- (axBldp]| )|a=o
frors which it follows that
.ﬁ%w Eoo(%,d, p)
= [ (axE(ap) mBC, %), d
[ Bk )b (m B &)
[ ¢]
-l -/Bﬂ (n X H('l "*1‘”[4) ' p‘“"a. -+ (n x B(:, —-x, Q) (a X p)c‘ha.d"
- ;‘%p + Bo(~4, ~%,9),

which proves the theorem.
Now we define

thad:

V:uspm{(&xp)e m:&ES’,peCa},

the spuce of all poesible Unear combinatious of plane incident fields on 892, and denote
by Fv the space of corresponding far fleld pattexrns. Define & by

(By, Eq) € £ If and only if there exist H;, Hy with
curl Ej = iijj, cur] Hj - —ikjEj in ﬂ, J o], 2,
(4.2) nxEB;-nxE, =0 ond,

pau X (n X Hy) = o x (nx Hy) = fu xE;  on 8Q.

‘Then we may state and prove the following result.

THEOREM 4.2. Assume that, for the given values of 8, m, g, the conductive
boundary value problem (3.1)-(3.4) admits a unigue solution for every incident plane
wave. Then the orthogonal complement Fi§ of Fy in LL(S?) is given by
(4.3) Fpw (B e L3(5%: there exists B, such that (Ey, En) € £},

where
(4.4) Ey (x) = /Sz h(d)e-k1d*dg(d), x e,

denotes the so-called Herglots field with kernel h.
Proof. Suppose first that h € L(5?%) with i L Fy, ie,,

/ h(%) Be(%,d,d x p)ds(x) =0 forallde 5%, pecC:
57
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Then, by the reciprocity principle (since h() - % =d - (d x p) =0),
/y (d X p) + Boo(~a, —%,h(X))ds(X) =0 foralld ¢ 8%, peC.
Interchanging the roles of ~% and d, we see that
(& xp)- /S’ Eo (%, h(~d)ds(d) =0 forallxe 5%, peC
The function _
[, Bl =)@

is the far field patten ¥ of the solution (F,G) of the conductive boundary value
problem (3.1)~(3.4) with incident field

EY(x) = _/ b(~d)e*sd*ds(d) = / B(@)e- %1% gs(d) m Bp(x).
52 &

Since (X x p) + Foo(R) = 0 for all X € §%, p & C3, thoe far field ¥y, vavishes on §%;
thus ¥* and G’ vanish in R3\ Q.

We define E; = F, H;y = G and By := ' = Ey, Ha 1= (1/ikz)cwl Ey in Q.
Then (Ey, E;) solves (4.2). Hence F4 is contained in the set given in the right-hang
side of {4.3). ‘The opposite inclusion follows from reversing the preceeding argumaents.

System (4.2) can be considered as an eigeavalue probless for the two parameters
ki, k3. By essentially the same arguments as in §3, we can estoblish the ¥redholm
alternative for this system: If (4.2) adwmits only the trivial solution E; = 0 in Q
for j = 1,2, then the inhomogeneous form of (4.2) has a unique solution for every
inhomogeneity. In this case, Theorem 4.2 states that Fy is dense in 12.(5?). Instead
of considering V', we then look at the far field patterns generated by the space

A = span {(a X p)c""a‘lm - (d x p)c”"a"lm :de St pe C’}

for a fixed direction d; € S%. Let F4 be the space of the corresponding far field
patterns and h € L3(5?) with b € F3; i.e,

/ B(%) - Eoo(%, d, d x p) ds(%) = /s h(x) - Eeo (%, d1, ds x p)ds(%)
s ]

for all d € $2, p € C3. Using the reciprocity principle as before and interchanging d
aud ¥ vields

(% X p) - fsz Eoo(% d,b(~d)) ds(d) = —iksp-c¢  forall k€ 2, peC?,
with ¢ 1= (1/ik2)d) X [gu Eao(—d1, =%, h(X)) ds(x), i.e.,

p-[scx/ Em(i,&.h(&))ds(&)—ikgc]=0 forall x € §?, peCd
59
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From this, we conclude that
% x / Eoo(%,d, h(~d)) ds(Q) = kg for all & € 52,
52
As before, the function

/ Eoo (- d, a(~d)) ds(d)
L]

is the far field patiern ¥y, of tha solucion (¥, G) of the comductive boundary value
problem (3.1)~(3.4) with incident field E' = Ey. Sincs the far field patiern Fo, is
a tangential field, we conclude that ¥y, (%) = —ikyk x ¢ for all X € 53 Thus ¥,
coincides with the far field pattern of —curl [e/exp(ikz|x{}/|x[)}. From the unigue-
oess of the far field patterns, the corresponding fields must coincide; thus ¥Fo(x) =
—curl [e(cxp(ikalx])/|x])] for x on R\ Q. Agwin, we define B, = F, H; = G,
Eq i= E' = Ey, Hy 1= (1/iky)cuzi Ep fn €. Then (¥, Ez) solves

owlE; = ik;H;, oudBy=-ikE; D jm1,2

(4.5) nxE;—-nx; =axcul cgg(}_k_z_l}_l) og 81,
|3}

p2n X (a x Hy) = 0 x (6 x H;) = fu x By + -‘.‘-‘E’:n X (n x curl? [ci'c—p%‘llfﬂ])

on 802 This argument establishes the following theorens.

THEOREM 4.3. Let §, 3y, py be such thai the conductive boundary value problem
(3.1)~(3.4) admits a unique solukion for every incident wave EY. Ther the orthogonal
complement of Ff of Fa in LA (52} i given by

Ft = EGL?~(32): there exists By and ¢ € C such that
A T
(E;,Qh) solves (4.5)}.
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We formulate certain problems in the optimal Sesign - lating structures such as multicritenia optimiza-
tion problems. We review the basic background of . problems, prove the existence of Pareto optimal
points, and give necessary conditions. We apply tht ia..er to t' ¢ numerical computation of optimal surface
currents {or the problem of siraultancously optimizing bot!  1e quality factor and the signal-to-noise ratio
of a conformal antenna.

1. Introduction

In our eariier paper [1] we summarized a coherent approach to the problem of
optimal antenna design. By foimulating various measures of performance as real-
valued functionals defined in the appropriate function spaces, we can systematically
use the methods of functional analysis and optimization theory not only to study the
existence and properties of optimal solutions but also to develop computational
procedures for the numerical approximation of these solutions in concrete cases. Thus
in [1] we provided analyses, including computational results, for two specific cases:
the maximization of power radiated into a given sector (or sectors) of the far-field
region and the problem of maximizing the signal-to-noise ratio.

It has long been recognized [11], [8] (esp. ch. 8) that the narrow focusing of the
main beam of an antenna has the concomitant effect of increasing the near-field
power. Not only may one wish to focus the main beam, but also to minimize the
power stored in the near-field region. Thus we see a typical probiem that arises in
antenna design, namely the problem of dealing with several, possibly conflicting,
goals.

The approach used most often in such situations is illustrated by the two examples
in [13. In the first case we introduced a constraint on the power available to the

0170-4214/92/090647-14512.00 Received 13 August 1991
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antenna by considering surface currents that are bounded in some appropriate norm:
in the second, we required the so-called quality factor, that is the ratio of input power
to the far-field power (both measured, again, relative (o the appropriate function-
space norms), to be bounded.

In this paper we wish to suggest another approach to such antenna design prob-
lems, namely the approach of multicriteria optimization. While well known in other
applied fields these techniques have not been applied, to our kaowledge, 10 problems
of antenna design. The subject of rnulticriteria optiinization has been most thoroughly
developed in the literature of mathematical economics and is most often associated
there with the names of Walras and Parcto who introduced the basic notions in the
late 1890s, The interested reader may consult the review article of Stadler [9] for the
historical background and the article of Dauer and Stadler [3] for more recent
developments. Applications to problems in mechanical engineering are described in
[10], which has an extensive bibliography.

We dedicate the following section 1o ap outline of the necessary background
material including the general conditions ensuring the existence of Pareto points and
necessary conditions in the form of a multiplier rule. Section 3 contains a statement of
the optimization problem and the proof of existence of an optimal solution. The final
section contains a numerical example.

2, Notation and basic theorems
We recali that a convex cone A in a linear space Z is a convex set with the property
that
xe A, a >0 implies ax € A 2.1)

Note that, in particular, 0 € A. Such a cone defines a partial order, <,, on Z accord-
ing to

x <, yprovided y— xe A. (2.2)

In order to ensure that the relation is not only reflexive and transitive, but also
antisymunetric we require, further, tnat the cone be pointed, that is that
AA(—A)={0}. In this case x <,y and y <, x implies that y — x = 0.

Example 2.1. The most commen example is that for which Z = R" and
A={x=x,...,x"Nx20,i=12...,n}.

Then x <,y ifand only if x* < y' for alii=1,2,....n where the latter inequality
involves the usual ordering in R.

Example 22. Let Z = SL,(R"), the set of symmetric n x n mairices, and set
A = {Ae SL,(R*)|(Ax, x) 2 0 for all x € R"}.

Then A is a convex, pointed cone.
In problems of vector optimization we are terested in minimal elements relative to
a given order cone.

Definition 2.3. Let S # (J be a subset of an ordered vector space Z. Then xg€ S is
a minimal element of S provided x ¢ S and x < 5 xq implies x = x,.
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Example 24. Let Z = R? with A = {(x, y)ix > 0, y > 0} as order cone. Let
S={x.yxz0y=0xy=1} .
Then all the points of the set
{(x,y) e Slxy =1}

are minimal.

The general muiticriteria optimization problem can now be formulated as follows:
given a lipear space X and an ordered linear space Z, let U < X and suppose
g: U— Z. Find uy € U such that g(uy) is a minimal element of g(U).

Definition 2.5. A point uy € U is said to be Pareto optimal relative to the vector-valued
Sunction g provided g(uo) is minimal with respect to g(U).

The term Pareto optimal is chosen here for historical reasons. Other terms have
been frequently used including ‘non-inferior solutions’, ‘non-dominated solutions’,
and ‘efficient solutions’. Some of these terms may be more informative in that they
better suggest the property that characterizes Pareto points, namely that we cannot
lower one of the component values by moving from that point without strictly
increasing at least one of the other components of the criterion vector.

In general, Pareto points are not unique as we can see in the following simple
example,

Example 2.6, Consider the cone A = R? of Example 2.4. Then the Pareto set i.c. the set
of Pareto optimal points for the function

X
gx, y) = (y)

defined on S = {(x, y}|x 2 0,y 2 0, xy = 1}, is just the set

{(x,y) e Sixy =1},

We remark that, in general, it is not true that there exists some point that will
minimize all the components of the vector criterion simultaneously, nor is it necessar-
ily true that standard scalar optimization methods can be used to find the Pareto set.
In particular, it is not generally the case that the minimization of one criterion subject
to inequality constraints on the others will yield a Pareto point.

In order to develop conditions guaranteeing that a point is Pareto optinal, we need
to introduce the concent of a polar cone. To this end, let Z be a Banach space with
dual Z*. Thus Z* is the set of all continuous linear maps 4i: Z — R. Denote the action
of an clement 2 Z* on ze Z by {4 2). For an arbitrary set £ < Z we have

Definition 2.7. Let E < Z. The polar of the set E is defined 1o be
Er:= {ieZ*{tz) €0 forallzeE}. (2.3)

Note that, by the linearity and coniinuity of 4, £7 is a closed convex cone in £%
regardless of the nature of the set £. We shall refer 10 E? as the polar cone of E. Related
1o the cone EP is the set E~ given by

E-:={reEPI{i ) <0 forallzeE, =+ 0}. (2.4)

Itis clear that £~ U {0} is likewise a convex cone in Z*. We shall call it the strict polar
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cone of E. It is a standard result [4] that 1he mnclusion
int(A?) = A~ : (2.5}

is valid provided Z is reflexive and A is a non-trivial closed convex cone in Z.
It is now a simple matter to establish a basic sufficicnt condition for a point to be
minimal.

Proposition 28. Let Z be a real Banach spacs ordered by a noa-trivial convex cone
Aandletie N IfSc Zand y& 5 is such that

(o) €l yd forallzed (2.8)

then y is a minimal point of S.

Proof. Let z€S, 2o %y, and suppose 2o <.y Then (y — 79) € AN{D}). Hence
{4y — 29> <0, which contradicts {2.6).

We can now prove a theorem guaraniecing 1he eristence of Parcto jxints under
conditions of wide applicability. We need only recali thy lbllewing definiticn.

g ' ' Definition 2.9. A map g: X = Z, X, Z Banach spaces, 15 coidfed complisely convinuous
¥ provided g maps weakly convergent sequences into nurin convergent scquensis.
5 We can now state the following exisicnce theorew
3 Theorem 2.16. Let X be a Banach space and Z an crdered rejlexive Banach space with
5 a non-trivial closed convex order cone A, Suppase that WtiA%) ¢ @, Then if U is
a closed bounded convex subset of X and
g: U2

- . is completely continuous, then g(U) has a minimal point and U contoins a Pareto point.

Proof. By Mazur’s theorem [12] U is weakly coirpact and hence. by the complete
continuity of g, g(U) is compact in Z. If we can show that g(UU) eantaing ¢ minimal
g point %, then any i e U such that g(d) = Z is a Pareto point.

Let £ eint(AP). Then 4 w0 for, if 4 = 0, then AP couldd coatain a bali and hence
would coincide with Z*. By reflexivity (A®) = A so that A = {0}, whuch would
contradict the assumption that A is non-trivial.

Now, for the given /, consider the map

z= (42, zeg(U)

of g{(U) — R. By continuity and compactness this map has z rnaximum on g(!"), say at
Zeg(U). Then

(L3 2Lz forall zegU)
Thus  is a minimal point by Propositicn 2.8.

The assumption of complete continuity of the wap g in Theorem 2.10 implies, in
particuiar, that g maps bounded sets into bounded sets. Thus iZxample 2.6 shows tha.
Pareto points may well exist even if g does not have this property. Iuceed the set of
3 Pareto points may itself be unbounded. That problems witit unbounded sets gti/)
may arise in applications, we shall sec below in section 3. In such cases it may be
possible to show that the existence of Pareto points follows from the compactuess of
certain subscts of g(U). In fact, we have the following result.

)
JU
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Theorerz L1Y. Law ¥ be a Sanuch space and & an ordered reflexive Banach space with
a nori-trivial closed connex order cone Al Suppc'.,c that int (A") # & and that U c X.
Then f g2 U = Z is such thet, for some 2 ¢ Z,

Gy in = Ay g{U) (2.7)
S nun-erspiy and compact. then U containg @ Pareto point,

Fivof. Note that af ¢ is 2 minimal poini for G, then zo is also minimal for g(U).
Indeed since 2 s minima for G,

'(:n .- /‘.}l"\ ("_ e '\[.‘.’c}. (28)

We hive t¢ show dat {2, - A) ~g{U) s {29}, Thus let x e g(U)n(zo — A). Then
X¢ 2o~ Aandalso: 'y 3 z -- A. By adding these tnclusions we obtain x € z — A, that is
N (20 -+ M) Gyowm 2L Thus 2 is also minimal for g(U). Now, if G, is compact ia
£ e ahe prooi of Theorem 2.10 shows that G, bas a minimal element and the proof
s somplete.

Vie conctude this section wity a necessary condiuon, in the form of a Lagrange
muitiplier rale, which will be suitable for the specific problem discussed in section 3
tolow, A mors general statement, as vell as the proof, can e found in the book of
Kivsch, Warth and Weimer (8]

Theovons 12 Let X and Z be Bunach spaces satisfying the hypotheses of Theorem 2.10

and suppose ihal g* X ~ £ is Frécher aifierentiable while h: X — R is continuously
Frécher differentiable. Let

8w {xe Yih(x) = 0)

and suppose that & ¢ § is o Parcio poiut for g, Then there existsa he — APandapu 0
such the

(4 (3) + ph ) ]x = O for all x v X,
Morcover, i ki) is surjecuns then i 0.
Remark. This theorem liolds even for weak Pareio points X, that is for those £ & S that
satisfy

@) =i ngld) =&

provided what wan " se ¢,

1 An eptirviantion prublem for auvenna desiga

As described i our earlier paper [1], we consider as an antenna any radiating
styucture that suppoirts a flow of charge, or surface current I, and which theieby
produces an clectromaguetic field in a homogeneous isotropic medium exterior to the
structure. For definiteness, we consider here the case of a conuecied region D c R?.
with non-cmpty interios, D .. and € 3-boundary . We shall use D ., for the (connected)
exterior domaiy R*\(S v D. ), we shall denote points by their position vectors x and
¥ and v:e shall choose the origin of the coordinates to lie in D .
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Assuming a harmonic time dependence, ¢ ™', the field, (E, H), produced by I is
required to satisfy the time-harmonic form of the Maxwell equations

VxE - ikZoH =0, (3.1a)
VxH +ik Yo% =0, (3.1b)

where Zy = (fo/€0)*?, Yo = 1/Zo, k = wlgouo)*'® and gy, uo are the free-space
permittivity and permeability, respectively. The quantities Z; and Y, are the free-
space impedance and admittance.

We recall [2] that the fields E and H have the asymptotic representation

e .
E(x) = —F(®)~ 0(1/r%), r=— o, (3.22)
and
C”"
H(x) = Yo —%xF(X) + o(1/r*), r— o, (3.2b)

where X = x/, , and r = |x|.

The vector function F, which has no radial component, is called the radiation
pattern. It is an analytic function defined on the unit ball S*.

The problems that we summarized in [1] involve some numerical measure of
performance, which is to be optimized by selecting the appropriate surface current, I,
from some preassigned subset of admissible curreats. The existence and uniqueness of
a solution to (3.1) satisfying the boundary condition

ZoixH=TonS (3.3)

and the Silver—Miiller radiation coadition [2], p. 113 for every tangential field
IeL¥(S)={¥YeL?*S)i¥ =0on S}
guarantee the existence of a mapping

X :LE(S)—LE(SY), (3.4)

which associates to each admissible current I the corresponding far-ficld pat w F,
This map, which is not known explicitly except in certain special cases, is known v he
compact and, by Corollary 4.10 of Colton and Kress [2], it is one-to-one.

In terms of this compact operator we can introduce several different measures o
antenna performance. An extensive list appears in [1]. Here, we shall consider two
examples of optimization problems based on such criteria: the first problem is cae
related to the problem of anteuna synthesis, while the sccona ‘and more complicated)
example involves the concept of signal-to-noise ratio.

The classical problem of antenna syothesis can be formulated as follows (see e.g.,
[8]). Given a desired far-field pattern Fo, find the surface curren: I whose far field
produces Fy.

Stated in this way, the problem has no solution in general as Fy may not be an
actual far field. In particular Fy may not be analvtic. However, as shown in [2], the
range of X" is dense in L?(S*), and we usually formulate the problem as that of finding
a best approximation to Fy measured in some suitable norm. For example, it is
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common to consider the functional
D(I):=J- | T(x) — Fo(x)]*ds. . (3.5
sl

Good approximations in this sense can be realized only by producing unacceptable
levels of the ‘quality factor’ given by
2= N ) /X Tl 250, 3.6)

which compares the power radiated into the far-field region with the power supplied
to the antepna structure. Here we suggest that appropriate compromises can be
studied by identifying the Pareto points for the vector criterion

D)
= 3.7
20 (—nmimu,) @7

subject to the power constraint

“ H ” LHS) £ L (3.8)

We are assured of the existence of Pareto points for this problem by the following
result:

Theorem 3.1. The map2: Li(S)— R? is completely coatinuous and hence Pareto
points exist.

Proof. Since the relatively compact scts in R? are the bounded sets, it suffices to show
that 2 maps bounded sets into bounded sets. However, this follows immediately from
the boundedness of the operator X and the fact that § is a bounded surface of finite
area.

As a second example we introduce the signal-to-noise ratio (SNRj defined by

(DR

MR D= A I &

(3.9)

where w = L®(5!) is rion-zero on a set T of positive measure. The denominator of (3.9)
is a measure of how mu<h the radiated field is corrupted by noise. For a fixed direction
% and constant ¢ > 0, we can formulate an optimization problem as

maximize SNR(I)
subject to I1lIfs, €1 and 2N < e,

where 2 is given by (3.6).

This problem was studied, for the acoustic case, by Kirsch and Wilde [6] and was
formulated, as we have done here, for the full three-dimensional clectromagnetic
problem ‘n [1]. These results generalize the problem for planar apertures that were
first studied by Lo er al. {7]. Here we wish to consider, not this constrained problem,
but the ector-valued problem with the criterion

- SNR(I))
2(1)

V()= (

(3.10)
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subject to
0 . (3.11)

In order to prove that Pareto points for the problem (3.10), (3.11) exist we shall use
Theorein 2.11.
Let ¥° e the set of attainable points, that is

¥ 1= {V(B]T % 0). (3.12)

Since we canunot show the closedness of 77, we extend this set, show the existence of the
Pareto points of this extended set and prove afterwards that these Parcto points lie in
fact in ¥, We begin with the following result.

Lemma 32, The set
Vym {V(I) + (?)Il #0,rz 0}

is closed and ¥4 (z — A) is compact for every z € ¥7y. Hence ¥y has Pareto points.
Proof. To show that ¥ is closed let {I,} & L#(S), {r,} € R with r, 2 0, I, # 0 and

v, + (?) _.< ;)«;w.

Since V is scale invariant, that is for any scalar z € C\ {0}, V(zI) = V(I), we can assume
that ||, || 25, = 1 and thus {I,} contains a weak-iimit point. Without loss of generality
we assume that I, » T weakly in L?(S) for some I with [¥]l,, € 1. Since X’ is
compact both as a map into L(S') and into C,(S') we have that X1, = X1 in
L2(5'} and C,{(S'). We show that I % 0. This follows from the convergence

A(0) 4 ry = [ H Ll ity 4 Fa = 22
since r, 3 0 and | XL, |l 39, = 1 X Ul 21, Furthermore

-2
ro=rim = (A G, 2 0.

L Y

Also we have that o [, = w X Y in L3(S') and wA'T # 0 because of the analyticity of
XL Therefore SNR(I,) — SNR(Y) = ~ z;. Thus we have

= - TR
(j‘) - ( SNR“_)z >= V() + (2) with s = r + | "”'“55’ 20.
&2/

r+ XL G T
d

This means that

) .
€79,
22

which proves that ¥ is closed.
To show the compactness of ¥, ni{z — I') we only have to prove that this set is
bounded. Lzt

z‘) and V(I,) + <0)
2 I'n

be a sequence in ¥ o~ (z - I'). Again we can assume that | L, Lis) ™ land r, = 0.
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Certainly V < 2(I,) + r, < z; and SNR(I,) 2 0. Again we conclude as in the first part
of this proof that (X,) contains a weak limit point I with 1| L < land X1, — XTin

‘TXS*) and C,(S*). From 2(I,) € z; we conclude that | XL, || fﬂa(s., 3 1/z; and thus

XX # 0. This shows that SNR(I,) = SNR(I), that is

Y(l,) + (?)

is bounded.
In the light of Theorem 2.11 we know that ¥ coutains Pareto points. This ends the
proof,

It is now very easy to show that existence of the Pareto points of ¥,

Theorem 33. Let

Y Vym {V(l) “+ (2)

be a Pareto point of ¥. Then z* € ¥, that is z* is also a Pareto point of ¥".
Proof. Let

l#O,r;O}

0
r*

2* -V(I")+( ), [*%0,r* >0
Since V(I*)e ¥ <= ¥, and V(I*) < ,z* we conclude from the miniimality of z* that
2* = V(I*)e ¥, This completes the proof.

Now we shall apply Theorem 2.12 to the optimization problem (3.10), (3.11) and will
use the resulting equations to compute the set of all ‘critical points’, which, as in the
case of 2 single-cost functional, contains the set of Pareto points. Note that, for this
particular example we shall not need the full force of that theorem since we have no
explicit equality constraints. Certainly other situations will arise in applications where
it will he useful to be able to handle such constraints and we raay bring the full foree of
Theorem 2.12 to bear in such cases.

The Fréchet derivatives of SNR and 2 at Iy e L(S) are (here and in the following

we write || - || for the L2- norm, either on S or on §');
2
Y ’ o ———e I 2 Y. A
SNR'(Ip, I IIwIIoll‘["wf oll*Re(HTo(X) X1 (X))
=~ [ T (X)*Re {w X To, wAT)],
2

Ao, 1) =

— 0 — 2
ll.xfloll‘["‘}ﬂ"‘l RedTo, I — o *Re (X Lg, ATH].

‘We now assume jor simpiicity that D is an infinite cylinder in the z-direction whose
constant cross section we also denote by D < R? (with boundary S). Furthermore let
I = 2 with a scalar function ! € L*(S). Finally, let o be given in the explicit form

XIE)= o | 1(y)e™ ¥ 7ds(y) = oL, %>, with o = = L gmims,
s 2\ nk
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Let /5 be a Pareto point. Application of Theorem 2.12 yields the existence of 4, 4 2> 0
with 44 u > 0 and — ASNR'(Io, 1) + 42'(Io, 1) == C [or all L & L*(S), that is

” Jf’l ". [IwaIoII’(.X’Io X)O’t""‘ I.X’]o( )llx’*[wzx-lo)]

KT u‘["f’o"’lo— o3 % [o] = 0.
0

or

NEZ
PEZE

i..:t Io(R)6 s
II wX Iol?
where Qo = |l Iol12/19 Io 1%
Now we distinguish between two cases. If A [y(R) = O then X" * X" [g = (1/Qo) /0,

that is 1/Q, is an eigenvalue of X * )¢ with eigenfunction /4.
If 4> 0 and K [o(X) # O we sct

5 M ”wxlo"‘ .YIo(i)
A X TR TH To) lwX 1ol

Then [, is also Pareto optimal and X'I,(R) = ||wot"1, ||?, thus SNR(I;) = lwot'I, %,
and

u
X‘(w’flo) + Iy -~ "flo”z Qo.xf'.xfio

#
Egk

and ;=

X3 A1) + jly = fQo X * X ], = %' on §. (3.13)

Therefore we see that if I, is a Pareto point of (3.10), (3.11), that is normalized sv that
X1, (R) = |wo I, || then there exists 2 > 0 with (3.13) where Qo = || I, |12/l I, ||2.
Solutions of (3.13) are called critical Pareto paints of the problem (3.10), (3.11).

If, on the other hand, I; solves (3.13) for some Qg and i > 0 then

K%Y m Iy, Ge%%) m |1 |12 + A1 I2 = Qo | X 1,12,
that is
H LX) = N Iy |12 = ZLI % = Qo Il 1,112,
Hence
X11(X) = w1, ||? is equivalent to [| [, ]2 = Qo | ¥ I, || (3.14)

Equations (3.13) and (3.14) describe a one-parameter family of critical points that
contains the sct of Pareto points or even the weak Pareto points.

We want to illustrate this approach via the necessary optimality conditions with
a numerical example (cf. Kirsch and Wilde [6] for the related cxamplc where 2 is fixed
and SNR is to be maximized).

We consider the case where D is the unit disc in R? and o is the characteristic
function of a portion of the unit circle, for example,

1 ife; €151,
() {0 otherwise.
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For this choice we can compute X~ explicitly: let

I(s):= I,{s) = i xe,

Jo=w

Then

00 2=
AI(t)= ¢ z X, glisgikeostt=a) 4o
jm - 0

= 271G i x)( — iyl (k)e”,

2=
where we have used the fact that
00
e-ihcut - z ( - i)'J.(k)Cl".
an -

Here, J, denotes the Besse] function of order n.

657
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Thus we see that X" is an infinite diagonal matrix with elements 2zc0( — i)/J,(k).
Likewise o"* 2t is diagonal with elements d;:= 4n?|c|*J;(k)? and

X *(w* X)) = 2n|0)? i X — i)JJJ(k)J. : c.ljlclknoou—n)ds

Jm~w

© -]
= Z Z a,,x,c“'

lm -y jum—go

where the coefficients a); are defined by

[}
ayy = 2z|o|3( — i)fJ,(k)i'J,(k)J eli-sgg

2n|e |3 (k) (K) (€U=im — U=ty L e,

i —
27['0"211(1()2([2—:‘), lfjﬂl.
We prnject equatioun (3.13) unto the finite-dimensional space

X, = span {¢"": | j| < n}.

Table 1. Solutions of Equation (3.15)

A Qo SNR Qo SNR Qo SNR Qo SNR
02 739 36.23 11.20 0.52 12.64 432
03 738 3046 10.67 0.18 12.58 3.46
04 737 26.99 1050 0.10 12.54 3.01
0.5 736 24.43 10.36 0.06 12.52 2.5
06 736 2232 10.29 .04 12.51 2.57
0.7  7.36 20.51 10.25 0.03 12.50 244 14.94 0.28
08 135 18.92 1021 0.03 12.50 2.35 14,78 0.20
0.9 135 17.50 10.18 0.02 1249 227 14.67 0.15
1.0 735 1623 10.16 0.02 1249 222 14.58 0.12
. 735 15.09
1.2 134 14.08
1.3 134 13.17
14 734 12.33
1.5 734 1158
1.6 733 10.92
1.7 733 10.34
1.8 733 05.78
1.9 733 09.28
20 733 08.84 10.06 0.00 1248 1.95 14.22 0.03

w
o

7.31 06.01 10.01 0.00 12.48 1.86 14.11 0.01
40 131 04.65 10.01 0.00 1248 1.82 14.05 0.01
7.30 03.88 08.91 0.0 1247 1.80 14.02 0.00
7.30 03.38 09.91 0.00 1247 1.77 . 14.00 0.00
. 7.30 03.04 09.81 0.00 12.47 1.75 13.98 0.00

X 7.29 0278 {9.81 0.00 1247 1.75 13.97 0.00

%0 129 02.60 05.71 0.00 1247 1.73 13.96 0.00
100 729 0245 09.61 0.00 1247 1.73 13.95 0.00

N o
fe Nl an)
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(A+ GE—jQoD)x=r, ¥ (1—Qod)lx;*=0,
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Thus equations (3.13) and (3.14) take the form

J==n

where E is the identity matrix,

D = diag(d,: |j| < n), with d; = 4n2|c|2 J,(k)?,

A= (alj)!.j--n ..... n

where R = (cosJ, sin §), .

.We have computed this example for the choice k =6, f; =40°, t; = 140°,
0= —90°and n = 16. For large ranges of i (from 0.2 to 20) we computed all the zeros
of the function

@(Qo)z= Y. (1 —Qodj)lx;l%

and r;= &iJJJ(k)C-U‘

jm ==

659

(3.15)

where x solves the first equation of (3.15) for @y, by a simple bisection method. It turns

".'""""""'::::iﬁailgi:_

a18 ema =0 .18 ay- 7.8

Fig. 2. Perturbations of minimal solutions
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out numerically that this function @(Q,)z has several zeros that correspond 1o local
Pareto minima. Table | contains the parameter j with the corresponding Qo and
SNR.

Figure 1 shows the different branches of solutions of these necessary conditions for
this range of ji-values. Numerical tests show that the branch of solutious correspond-
ing to the lowest Q-value is likely to consist of Pareto minima. In Fig. 2 we show the
distribution of { — SNR, @)-values corresponding to complex perturbations of the
individual components of the surface currents x associated with each of three
{ — SNR, Q) points on the lowest branch. In cach case, all the resulting ( — SNR, Q)
pairs lie outside the negative cone as indicated in the figure. Hence, within the range of
the perturbations, the points on the lowest branch appear to represent Pareto minima.

We note, finally, that this lower branch shiows a relatively wide variation in the
value of SNR for very small changes in the value of the quality factor Q. This indicates
that one should be able 1o achieve rclatively high values of SNR without an appreci-
able degradation of the quality factor.
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1. Abstract

In recent vears, there has been increasing interest in the usz of iterative methods
for solving a vanety of problems in propagasion, scavtering, and inverse satteiing of
radio waves, In this paper, we review a number of the most-prominent methods for
solving operator equations, anising in wave-field problems. The methods are used
both in time-domain and frequency-domain problems and, in the frequency domain,
are most useful at [ow and intermediate frequencies. In direct-scatiering problems,
we describe the essential features of the Neumann series, over-relaxation methods,
Kiyiov-subspace methods, conjugate-gradient and biconjugate-gradient methods, and
the conjugate-gradient-squares technique, Most of these methods are shown 1o be
derivable from an error-minimization principle using various error criteria.
Convergence of these methods is discussed. The error-minimization principle is
shown to underlie a number of approaches to inverse problems, of reconstructing
complex indices of refraction and scattering shape, from scattered-field
measurcments. The same iterative methods used in the (linear) direct problems are
also appiicable in the (nonlinear) inversa preblems.

roduction

Radio-wave problems are ofien formulated as integral equations, and it is this
form which serves as the starting point for most numerical solutions. Typicaily, the
integral operators which occur are boundary integrals, when considering scattering
by impenetrable or penetrable homogencous objects, and domain integrals, for
penetrable inhomogeneous scatterers. These operators are invariably complex and
non-self-adjoint, which complicates most numerical approaches. In a large number of

57
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Electromagnetic Scattering by Indented Screens

John S. Asvestas, Senior Member, IEEE, and Ralph. E. Kleinman, Senior Member, IEEE

Abstract—The probiem of three dimensional electromagnetic
scattering from a perfectly conducting screen with a bounded
indentation is formulated as a system of boundary integral
equations for the electric current deusity con the cavity wall and
the interface between the cavity and free space. It is shown how
the fictitious current density on the interfuce may be eliminnted
resulting ia an integral equation of the second kind for the current
density on the cavity wall only, with no integration over the
infinite screen. In addition, integri representations are derived
that represent tbe field everywhere in space in terms of the
current density on the cavity wall onlv, Furthermore, asymptotic
expressions for the far field are also presented. The equations
and vepresentations simplify considerably in the two~dimensional
scalar case and results are presented for both TE and TM
polarization.

I. INTRODUCTION

" OUNDARY integral equation forraulatons of electro-
E_ magnetic scattering problems serve as one of the primary
bases for numerical approximations. The electric and magnetic
field integral equation formulations of scattering of an incident
field from a bounded obstacle immersed in free spuce are
well known (e.g., Poggio and Miller [1], Colton and Kress
[2]) as are alternate formas which have been developed to
eliminate illposedness (non-uniqueness) of these equations at
interior eigenvalues or cavity resonances. These include the
combined field and combined source equations (e.g., Brakhage
and Wemer [3], Burton and Miller [4], Hamrington and Mautz
[5)) and modified Green's function methods (e.g., Jones [6),
Kleinman and Roach [7), Jost [8], and Yaghjian [9]).

When the scattering object is above a conducting plane,
the inmegral equation formulation is much the same. Using the
nethod of images, integrals over the planc miay be removed
by introducing the Green's function for the plane as the
fundamental solution. The resulting inw:gral equations are
changed only by replacing the free space Green's function
by the Green's funcdon for the plane and adding a reflected
field 10 the known term.

When the scatiering object punctures the conducting plane,
the problem is still easily reduced to familiar integial equa-
tions. In the case of scattering by exumusions on a perfectly
conducting plane, the presence of the plane may be taken
into account by combining the results for scattering from
an unperturbed plane with the field scattered by an obstacle

Manuscript received Jone 15. 1992: revised June 29. 1993, This work was
supporied in part under AFQSP Giant 91-0277 and ONR Grant N0D014-91-
1.1700.

J. S Asvesas is with the Zrumman Corporate Research Center. M/S
A01-26, Bethpage, NY 117]4-3580.

R. E. Klsinman 1s with the Center for the Mathematics of Waves, Depart-
ment of Mathematical Sciences, Universuy of Delaware. Newark. DE 19716.

IEEE Log Number 9215046.

consisting of the exwusion and its image in the plane, a
bounded obstacle in free space.

The picture is dramat .ally changed when the conducting
plane has indentations rather than extrusions. The previously
cited methods of reduction to simpler problems which do not
involve integrals over the infinite plane are no longer available.
Moreover this case has become important since it has been
observed that small indentations may considerably change the
scatering characteristics of otherwise smooth surfaces.

This problem has received considerable attention over the
years. Most of the boundary integral formulations in the
engineering literature are based on Schelkunoff’s equivalence
principle, which is essentially an applicaton of the vector
Green's theorem, see Chen [10], coupled with the network
formulation of Mautz and Harrington [11]. The scattering
domain is decorpposed into two purts, an infinite half space
and a cavity in the plane. The two are connected via currents
on the fictitious surface barween the cavity and the half space.
However, the integral equation for the closed domain bounded
by the actual physical indentation and the fictitious surface
separadng the cavity from the halt space is plagued by the
usual problem of non-uniqueness at the cavity resonances,
¢.g., Liang and Cheng [12)]. In this approach the fields interior
and exterior to the cavity are coupled by a fictious magnetic
current on the interface between the cavity and free space. The
virtue of this equation is its relative simplicity; however. the
price one pays is the occurrence of spurious resonances.

Recendy a different attack has been made using a com-
bined finite element boundary element approach wherein the
boundary integral equatior arising from the exterior half space
is coupled on the fictitious surface with a finite element
formnulation for the fields in the cavity (see Jin and Volakis
(13, 14), Jeng [15]), and Jeng and Tzeng {16]). A variation
on this approach was used by Wang and Ling [17, 18] in
which the cavity was decomposed into subelements each of
which was treated via integral equations on the subelement
boundaries. These hybrid approaches apparently eliminate the
resonance problem (although no theoretical uniqueness proof
is available yet) at the cost of a finite ¢lement rather than
boundary element computation.

For related scalar problems in acoustic scatiering, Willess
(19, 20] derived boundary integral equations for unknown
functions defined only on the surface of the indentation and
showed that these equations were uniguely solvable for all &
for both Dirichlet and Neumann boundary conditions. How-
ever the kernel of Willer's integral equations involve integrais
of free-space Green's functions over the entire boundary,
screen plus indentation, and therefore are awkward for nu-
merical implementaton.

0018-926X/94304.C0 T 1994 [EEE
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Fig. 1. Geomeuy of the Indented Screen Problem.

In the present paper we develop boundary integral equations
for the eiectromagnetic indented screen problem that avoid
the introduction of a “magnetic” current density. We obtain
integral enuations in terms of an electric current density on
both the caity wall and the interface between the cavity and
free space, and show ’jow these lead to a second kind integral
equation for the electric current density on the cavity boundary
only. This approach is based on the direct approach using
Green's thecrem rather than a layer ansatz. The integral equa-
tions obtained do not involve any integrals over the infinite
screen and, thus, lend themselves to numerical computaton.
Moreover, these equations are expected to be free of cavity
resonances thcugh this is still to be proved.

In Section II we state the problem and in Section III the
main results: an integral equation for the cwmrent density
on the cavity wall and integral representations of the fields
everywhere in space in terms of the solution of the integral
egquation. These representations simplify considerably in the
far field and the results are presented in Section IV. Secuon V
contains the corresponding two-dimensional integral equations
and representations for both transverse electric and ransverse
magnetic polarizations. The derivation of the main results is
presented in the Appendix.

II. STATEMENT OF THE PROBLEM

The geometry of the problem is shown in Fig. 1. The domain
of interest is that exterior to an indented perfectly conducting
plane. The plane is taken to coincide with the z-y plane
in a Cartesian coordinate system. The bounded indentation,
denoted by D, has a boundary consisting of two parts: S which
lies in the lower half space and ¢, a portion of the z-y plane.
The entire plane consists of ¢ and its unbounded complement
o°. In the scattering problem the boundary consisis of S and
oc. .
We consider an incident electromagnetic field (E™¢(r),
H'"¢(r)) originating in the upper half space. with the restric-
tion that no sources exist in the image of D or its boundary
enc: assyme that all field quantities have a hammonic ume
dependence. e~ ™!, which is suppressed. The subscript 1 on
a vecior quantity indicates its image in the z-y plane. for

example if the Cartesian components of E(r) are given by

E(r)": (E,(r_),E,,(r),E:(r)) 2.1)
then by E({r} we mean
Ei(r) = (Ez(r). E,(r), = E.(r)) (2.2)

Consistent with this notarion we denote a position vector by
r = (z,9,2) aad its image in the 2-y plane by r; = (z,y, —2).
Moreoverwe denote by D; and S; the images of D and § in z-
y plane and by D that part of the upper half space excluding
D.' and S..

If the indestation is absent, so that we are treating scattering
by a perfextly comducting plane, then the total field may be
found by &e method of images to be

E°(r) := E™%(r) - EP(ry)
H(r) := H*(r) + Hir(ry)
Since (E™(r), H™(r)) satisfy the homogeneous Maxwell
cquations
V x E{r) = ikZH(r), V x H(r) = —ikYE(r)

2.3)

(2.4)

except at soapce points, if any, in the finite part of the plane,
it is readdly verified that (E°(r), HO(r)) also satisfy the
homogencous Maxwell equations except at source points and
their images. The quantities Z and Y are respectively the
free-space mpedance and admittance. Moreover when z = 0

z x Br) = 0, 7 -E%r) = 2z E™(r) (2.5)
and
zxHr) =22 x H"(r) 3 -H%)=0.

Here Z denates 2 unit vector in the z direction.

The presence of the indentation gives rise to fields in D as
well as a scawered field in the upper half space leading to the
natural decompoesition of the total ficlds

E(r) = E°(r) + E*(r)
H{r) = H%(r) + H*(r),

where (E* H*} satisfy the Silver-Miiller radiation condition
for z > 0. A more precise staternent of the scattering
problem then is: for a prescribed (Eir¢,Hi?¢) find (E, H)
in the scaering domain consisting of the indentation D,
the upper half space, and ¢ such that (E, H) and (E*, H?)
satisfy Maxwedl's equations in D and the upper half space
respectively and 2 X E = 0 on ¢° and S or equivalently

(2.8)

(2.6)

2.7
z>0 (27)

n<E=0 aa ¢¢ and axE=0 on S.

In addition we mquire that [, (|E{? + |H|?)dv < o where
V is any bounded subset of the scatiering domain. This finite
energy condition emsures fulfillment of the edge condition at
the interseaion of S with the plane. Note that since ¢ is in
the scattering domain. E and H (and their denvatives) are
continuous there.

In this paper w¢ present boundary integral equations over
finite boundanies whose solution gives rise through a represen-
tation theorem 1o the solution of the problem described above.,
which we refer 0 bereafter as the indented screen problem.
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0. MAIN RESULTS
We define the free-space scalar Green's function as

eiklr-r'[

G(r, l‘l) = m

(3.1)

and introduce the Dirichlet and Neumann functions for the
full plane

GD(r,rl) = G(r, rl) - G(r, r:)
Gn(r,r') = G(r, ') + G(r,x}).

(3.2)
(3.3)

Here r} is the image of the point r’ in the z-y plane and Gp
and Gn satisfy the conditions

Gp(r,r') = %G‘v(r,r’) =0 for z2=0.

We also introduce three dyadic Green's functions

3.4)

L(r, ') = ikV x G(r, )1 (3.5
) =ikV x [Gu (e, )L + Go(r )23] (3.6)
') = ikV x [Gp(r, v )L, + Gn{r.v))22] (3.7)

where [ is the identity dyad and [, is the transverse identty,

L=xx+7y. €X))
We take V to operite on r and V' to operate on r'. These
dyadics sadsfy the foiiuwing distuributional differential equa-
tions

V x Vx L~k = -ikV x §(r,r')] (3.9)
VxVxI;~-kTL =—ikV x [6(r,r)]

§{r, o)1, — 22)]  (3.10)
V x V x [, = k*L, = —ik¥

x [6(r,0")] = &(x,v}) (L, - 22)] (3.11)
and the boundary conditions
zxI, =0,

IxXxVxLo=0 for 2=0. (3.12)

Now assume that (E, I) satsfy the scattering problem defined
in Section Il. Let us inwoduce the electric current density

Js=axH on & (3.13)
where 1 points away from D and the auxiliary current density

Je=2xH on o (3.14)

Since S is a pant of the physical perfectly conducting boundary,
Js is an actual current density but since ¢ lies in the scattering
domain and is not part of the physical boundary, J, is a
fictitious electric current density. While it is useful 1o use J,,
1 the analysis it is not essential as will be shown. Nevertheless
it is in terms of these two currents that we 1nay represent the
field according 1o the following representation theorem:

If (B, H) solve the scattering problem defined in Section I,
then

/ 3.(r) x VG, )do

+ /s Is(r) x VG, ')ds = %H’(r'),z’ >0 (3.16)
2ik / I1.(x) X VG(r,r')de

+ ‘/st(r) -Dy(r,r'Yds = ikH(x'),r’ € D (3.17)

/Js(r) Ly (r,r")ds = ikH*(r'),r’ € Dy (3.18)
s
and

/Js(r) -V x Dy(r,r')ds = K>YE*(r)',r’ € Dy. (3.19)
S

All four representations are derived in the Appendix. The
first two, (3.16) and (3.17), show that the electromagnetic
fields (B, H) may be represented everywhere in the scantering
domain in terms of Js on S and J, on ¢. For these two
current densities we can state the following.

The current densities in (3.16) and (3.17) are svlutions of
the coupled pair of boundary integral equations

/ z x [Js(r) x VG(r,x')jds
S

=3, - ;1—J°(r'),r’ co  (320)
1
+2 f & x [1,(x) x VG(r.*))do
% sE),r' €S 321)
where
Iy =2’ x HO(x"). (3.22)

Equation (3.20) can be considered as a defininon of the
fictitious current density J, in terms of the real one, J5. We
can use this definition in (3.21) 10 eliminate J, altogether and
obtain the following,

The electric current density Js in (3.16)—3.19) is a solution
of the boundary integral equation

s() -8 X (Ko J5)() = F@),f € §  (323)
where
F(r') = &' x / 1) x VG(r.r')do (3.24)
and ’
(Ko Js)(r :=~I/Js(l‘ Ly(r.r)ds
+2/ ds /d (3 x [Is(r) x VG(r.c")])
X V"SG(r” r') (3.25)
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In (3.25), the integration variable on S is r, while the one
on ¢ is r” and V" denotes the gradient with respect to r”. The
uninown current density can be extricated froimn the integral
over ¢ in (3.25), and we can make the following statement,
alternative to the one above.

The eleciric current density Js in (3.16)<(3.19) is a solution
of the boundary integral equation

%Jg(r’) ~(LoJs)r') = F(r').r' €S (3.26)

where F is defined in (3.24), and

(Lods)r) = - /s dsJs(x) - {fzzz(r, r') x &'

/da”VG(r r’) x [z X IM

+ (&' x 2)V'G(r”, r')] } (3.27)

Once the current density is known, the fields in Dy can
be found using representations (3.18) and (3.19). In order to
determine the fields in D and its image D; one must first
find Jo from (3.20) and then use the representatons (3.16)
and (3.17) to find the scantered magnetic field in D; and
the total maguetic field in D. Additional, simpler looking
representations for the fields may be obtained in terms of the
fictitious magnetic current deusity

M,=2xE on o (3.28)
Two examples are
r
2/ M,(r) -V x L(r,r')do = K*ZH*(r'), 2' >0
(-4
(3.29)
2/M,(r) -L(r,r')do = —ikE’(r), 2'>0. (3.30)
-]
While these are initially appealing because of their simplicity,
tirey involve the calculation of M, (r). While it is possible to
express this quantity in terms of Jg and J,, this calculation
involves a number of additional integrations so that the sim-

plicity gained in the representations of the field for 2/ > 0 is
paid for by the additional work in finding M,.

IV. THE FAR FIELD

The far field is most easily determined using the represen-
tagon (3.18) which we repeat here in expanded form

/ 3s(r) - Vx[Gu(r, &)L, + Gp (v, r')32)ds
S
=H'(r'),x" € Dy. @.1)

Recalling the definitions of the Greens functions, (3.2) and
(3.3), and employing the standard asymptotic forms for large
' we see that

Loaikr B

VGn = K¢ [ife=4¥ s £ e Lo ) W)
47! r3
ike“" ., ) e 1

VGp = iy PR Pt O(;;) (4.3)

vhere |r}| = | = 7/ and £} = r//r’. Thus in the far field
(forz’ > 0or0< ¢ <7/2)

zkclkr

) R [ 350 et 4 e

+ Js(l') ek o #e~™ "] x 32)ds (4.4)

ar

Boe) s R [ (e eqas0 ¢

+ c—lkt‘ r[Js

o[l + 22
£ -0 —2z)]}ds (4.5
This expression may be further simplified by noting that
s(r) x # - [L + 22 = Js(r) x &' (4.6)
and
Js(r) x - [L =~ 22] = (Js(r) x )i = =(Isk(r) x ¥ 4.7
where
(Js)i(r) =Js(r) = 2Is(r) - 22. (4.8)

Then (4.5) may be written as

zke""
4mr!

Hs(r/) - /[ JS r)e ~ikh,-p Js(r)e”“" ']ds

. (4.9)
Note that the term O(7) has been omined from (4.4), (4.5)
and (4.9). The electric far field is easily obtained from the
relation

E’=-Zt' x H". (4.10)

It is observed that the far field is expressed entirely in terms
of the current Jg on the indentation S.

V. THE 2D CaASE

Both the integral representations and integral equations
presented previously simplify greatly when it is assumed
that the indentation is cylindrical and ali field quantities
are identical in planes perpendicular 10 the cylinder axis.
Specifically, we assume that the z-axis is the symmetry axis.
that the scattering surface consists of a curve § in the y-:
plane and two semi-infinite lines on the y axis. that all field
quantities are independent of r, and we define the Green's
function to be

Glr.r') = —%H(‘,”(klr - ') (S.1)

wherer = (y.zland v = (y.2"). The image r, of r1s 1y, 2
We then consider the following two cases.
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A, Trarsverse Magnetic Polarization:
Here we assume that

E®¢(r) = u™(r)% = u'®(y, 2)% (5.2)
E%(r) = u®(r)%, u®(r) = u'™(z) — u'™(r;) (5.3
E(r) = u(r)x, E*(r) = v*(r)x. (5.4)

The boundary conditica (2.9) then implies that u(r) = 0 on
o° U S. Using Maxwell's cqunions we find that

= <
H(r) kZ ~~—=Tu(r) x x. 5.5
The surface current densites become
Eu |
Jsﬂ--‘-k—ian on S (5.6)
1 6u.
=—————~ LY
Je 26.; on 7 (§M

M, =uy on o L3y

The basic “current densty”™ 15 §¥ on 5§ while w and §* oo
the line segment o are awdiany “Current denutes”™ Operating
with the curl on the representations n (3.16) «ad .1.17) and
taking int account (5.1)3<(5.8). lcads to the rcpresenanons

Ju'r f&u

2,8. G\rrdao./ Grrd:
- -y ﬂr‘.: >0 &y
and
] S
_2/ 6‘:‘”6“‘.1"."&0- / dmr'G\-(r rés
s Oz Jg on
muir’reD I )

wxdu.hemuzrmumbemgmthpeuwmkqm Eguation
15.9) may be rewnien using Green's theorem: 11 D and the

facthat u =0on 5 us
2/u(r}Mdo w -yt 2 >0 S50
v O

which may aiso be obtuned directly from (3 301 Sunce e
single layer disthbuton i1s contanuous, +$.9) holds for : = ©
also. in wiuch case it defines w (or equsaienty w') 2@ o wm
terms of §* on ¢ . 5. Equadom 13 19) becomes

Ou:r: .
—/ —Gontrde=v"r r 2D B
§ Om

in agreement with Willers [20) The megral eguations 3 ICh
and 13 211 besome

ou.r Cowr oGt ou'r ) « -
- / ; as ~ r - a
o g ™ o A
TOowT Nt Mt Gty
-2 —————— g o — 4»
, = - T . -y
Ve
- . - r ~ . &
P

The auxiliary unknown % on o may be eliminated yielding
an integral equaticn of the second kind for the basic current

density $¥ on §
10ulr) , [ 2 k(e s
2 on s Om (5.15)
Su™(r) BG(r.r’)dd ‘es )
dz on' F
where
Kir.e') = 80\(1' r) /BGlr .r)
o'G(r".r‘ v .
x Tw . r.r € S (516)

We sec that it 1 sufficient w0 wdve (5.15) for §X on S
Then u and §* oo o may be found 1n a sequence from
(5.9) and (2.13). Once all of these funcuons 32 obtaned. the
represeniatoc formulas 5 93+5 11) may be used 10 determune
the field al any poant o e scalleming domnmun. It should e
noted. bowever, Biat of e far Beid 3 the quanuty of wievest
® may be detrmuned trough S 122 soiely 10 terms of §2 on
L. the b cwTent densty. to be

- - s .
[ 4 . [4
\i.l’ = / \" —-wl_'-m,v.“
Svorar s om
’O(-i-;,'r-a. $: Ty
8 Tramnerse Elec:ne Prarmzanon
B s oate we assuame L
H"r av™rxs ™, - x W
H'r =2 rx:'r we™¢ - > g,
Hr svex Bt =."¢ 2 bl
Maxweu 3 equious het unpey sl
Er o -—~T1 ex . I
a}
and B Srenldns TondidoR © ¢ becoroet
N .- . an
— ", 08 7 _ > S ew-
The arface cwimest Orosstrs S owne
Jy = mrx w 3 £Ih
J, e s x wm =~ 23
. »
M. ——x a = L
T

The Datad  CaTem SCEN 4t e Y EDE Wt 8238 C e e Al
LIS SRR NN PY B bt B s TR T TS0 i Ve =
WA e eafeeisaes and Jerp e 0T Grexs s feacuda
¢ A Ovadecy Yol T S rtetseance forme ad
- v

Y S
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and

on
=v(r').r' € D.

2/v(r)———ac((;_'r )da+/v(r)————-acp(r'r)ds
I - S
(5.27)

Equation (5.26) may be rewritten using Green's theorem in D
and the boundary condition (522) as

ovir)
. J2

a result wiuch may also be obuuned directly from (3.20). Note
that the contnuity of the single laver ensures that (5 28) holds
when =" = - and hence. dus equanon may be used w0 define
+* 00 7 10 tems of § on o, however. it 13 preferable 10 use v
co ~ and 5 as the bruc vaknowns. Equaton (5 28) represeats
v’ for : > 010 terms of § on 7 wheseas .S 261 requures v
on both « and 5 EgGuanon (1 18) however, »eids

2 Gir.tdo =v'ir').

"2 0. (5.28)

ds=1v'r .r €D, 15 29)

; &G\ r. v
foe
S

wiuch represents 1. a1 sast .o Do terms of ¢ oaly 0@ &

The utepra equabons for + on ¥ and > are ‘ound from .3 223
and 323 w0 be
& -
'l’-/ r — és =z 1 {:> £330
.S
a
b ’ = , - Jor
_‘ r ‘ttfi_'_i_:,~:l‘ r‘iurr_aq
< 4 o Je (244
=0 rcs S 23D
Whoe o axd 31 may be consdered as a syvstem of

iegTai equalicns for the ™wo wnancwn funcuons - on S and
T om 7 M AULIAN JTADOWE © on 0 may bde elumunated
vie:ding 3 Fredhoim egrabon of the second lund for v on §:

.« r ] oG
= -/tzhtrdJnllr“"r-——-darES
- .8 - d:
15.32)
“here
. oG nr.r - ,‘/ac(r.r"‘.
NKrr = - -2 -
on . on
.EG_ALL.&. reeS  (5.33)
o:”

it s slear that o oe Y .3 the basic cusrent density. When it is
apown then & 20) rnay be used to define v on ¢ and once these
Guiabhes have been found. the representanon formulas (5.26)
and 527 may be wsed 0 define o i the endre scatering
dommaiz Heweve: e far field may be determuncd solely in

wres L6 e N from 5 290 10 be
. we ™ T
? - e L
-~ ~

e STR”

V1. CONCLUSION

In this pap=r we have derived new integral equations whose
solution, used in conjuncuon with new integral representations
also derived here, give the field scattered by an indentation of
arbitrary shape in a perfectly conducting plane screen. Integral
equations of the second kind for the unknown eleciric curent
deusity on the wall of the indentaton are found and it 1s
shown that the field everywbere in space may be represcated
in lerms of this quaptity. Addinonal representations involving
fictitous electnc and magnetic curvent densities on the plane
interface between the indentation and free space are presented.
It 15 comjectured that, while alternative integral equations for
these ficotious cunrents have extubited the famuliar pmblem of
poo—:4ue solvability at frequencies comespooding to cavity
resonances of the structure bounded by the indentation and the
:nterface between the indentation and free space, the equations
presented here are unuquely solvable at all frequencies. The
umplifizabons that result when the sgucture s cvlindrical are
presented for both transserse elecyic and wransverse magneuc
solanzapons Fanally the far field representations in terms of
integrais of the electne current deasuty only over the walls of
the ndenuanocn are given for the general 3D case as well as
the 2D cases for both polanzatons.

APPENDIX
Here we indicate how the integral representauons and
equatons of Secuon LI ase denved. The basic dyadic idenuty
for tus purpose 1s

/:Vit(v‘(I;'A—a-VxVxAjdv
v

= / n-ax(Yx A)+(Vxa)xAlds (A1)
/B
where a and A are twice differentiable vector and dyadic
valued functions. respectively, in V and a x (V x A) +(V x
#) X A is continuous in V' U B, V denotes a domain in /R}
with boundary B and a denotes the unit normal on B directed
away from V. This idendsy is found. for example. in [21].

If ¢, £ = 1.2.3 denote rectanguiar unit vectors (X; = X,
X2 = y. X3 = Z) we define the dvadics
: erkr—r |
) N __Ii \v3 \ —
LY. 4_”( x——-——-l = X¢ £€=1,2.3.
(A.2)

Identifying A with ['*) and taking V' 10 be the domain interior
to B and exterior 10 a ball of small radius centered at r/, the
above identity can be used. letting the radius of the ball go
10 zero. to obtain

Theorem Al IfVxV xa-k’a=0 in V,then

/ a-air) x (V x ['¥(r.s")) = (V x a(r)) x LO(r.r")]ds
B

=1k k -V xa(r).r eV
=0rev. (A.3)

=V uB
The denvauon of this thecrem 1s a standard, though sensi-
uve. process but we note that both terms n the iniegral over

N ind
where \
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the boundary of the ball contribute, that is, if B,(r’) denotes
the boundary of the ball of radius ¢ and center at r then

lim n-ax(VxT®rr'))ds
=0 B.(r")

- _'_;f,-‘(,z, T X aE)r €V (A4)

L a-(V xa(r)) x Tr.r')ds

“—0 /5, ¢

- -3;3&,,1, T x a(r)r €V (A.5)

where use 15 made of the expansion
arj=ar’) ~(r-r) Valr) +0() {A.6)
for r on B,(r'). This process does oot yield results for ¢ € B
since the Limit 1 (A.3) exists oaly if the inegration is over
e entire surface of the ball. Theorem A.l remains valid if
V' is unbounded provided that a satisfies the Silver—Miiller

radiation conditios

im rx V xalr)+tkra(r) = 0 wuformly in . (A7)

Lt _J

We note that e dvadic Green's functon [(r. ') inwoduced
in (35) i1s given by

Lir.e) =D ) « L3 e) s Drr’)  (A8)
and, bence, (A.3) may be used to obuin
/ 8-la(r) x (V x L(r.r')) +(V x &(r)) x L(r.r")ds
¢ a2 %7 xa(r), rev
=0 gV (A.9)

Idenufying V with D, the pocy of the scattering domain
lying below the z-y plane in the indented screen problem, and
a first with E and then with H leads to

Theorem A.2 fE and H satisfy Maxwell’s equations
inDendia xE =0o0n S then

j A x E(r) -V x L(r.r')do + ik2 i x H(r) -L(r.r')ds

ous
=0. >0
=-KZH{r), reD (A10)
and
/ B xH(r) ¥V x L(r,r')ds - ik}’/ axE(r)-L(r.r')do
oS L4

=0. />0

=KYE('), reD (A1)
where 6 = Z on o. Observe that these representations involve
not only the electric current densities on o and S bus also the

“magneric current density” on . To obtain represensations for
E’ and H* when :' > 0 we proceed as follows.

By replacing 2z’ by -z’ in (A.3) we obtain
[ ats) x (5 x 2O 6) + (9 x afe))
B

x DO r)|ds = ikxkeke - V) x ae)) el € V
=0.rigV (A.12)

where ¥/ = (3%, Fd —3@;7) and v} is the image of ' ia the
z-y plane. We define the dyadics

Lyre) =D ) 2 LV (roe)) + T¥(r. r)
L0 5) + L) F LV rr))
= ikV x {Gg (r.r)%x + G x r.XWy+G o (r. r')iz)
(A.13)

with Gv and Gp defined in (3.1)~(3.3). With these definitions
it is straightforward to verify that the boundary conditions
(3.12) are satisfied; that s,

ixrlsixVx[2=Q for :=0 (A.14)
and moreover that
2-ar)x Vx[irr)=25" a(r) x (V x L(r.r"))

for za0 (A.15)
and
8- (Vxa(r))x[ir.r') =23 (V x a(r)) x L(r.r)
for z=0. (A.16)

Using the definidon of the dyadics L, and ['; equations (A.3)
and (A.12) may be combined to yield the representation

/ B lanx (VxLie )+ % xar) x [;(r.r')]d-
» :

=V xar eV gV
mgk(C e air;. gl etV
=0.r' gV gl (A1T)

If we choose V 10 b the entire upper—haif spsce, require
that A satisfy the Silver~Mdller radiation conditions ip it and
take into account the boundary conditions (A.14) satisfied by
the dyadics, we see that (A.17) implies

-/ Toar) % (VxLirr))do = k¥’ x air').z' >0
et

=ik(V, xa(r))),..r' ¢ D
(A.18)
_/ 3 (Y xa(r)x L(r_ r)de = ikV' x n(r').:' >0
4T &

= ~ik{C, x a(r})),.r' € D
(A.19)

In particular, choosing a 1o be E* in (A.18) and H' in (A.19)
we find, since 2 x E = 0 on o¢,

2/ Ex E(r) VxI(r.r')do = K2 ZH(r'). 2’ > 0
’ =k*ZH!(r)).r' € D
(A.20)
and
2/ 2 x E(r)-[(r.r')do = —kE*(r'). 2’ > 0
o

=1kE}(r)).r' € D.
(A.2])




ASVESTAS AND KLEINMAN: ELECTROMAGNETIC SCATTERING BY INDENTED SCREENS ) 39

To obtain (A.20) and (A.21) we bave used Maxwell’s equa-
tons and the simplifications in (A.15) and (A.16). Note that
we may write E or E* in the integrals since 2 x E® = 0
on o. This establishes the representanons (3.29) and (3.30).
Combining the representations (A.20) and (A.21) with those
obtained earlier, (A.10) and (A.11), to eliminate the terms
involving Z x E we find that
2
k2 ax B(r) L(r,r')ds = -%ZH‘(r'),z' >0

ousS
2
= -k?ZH(') ~ -IEZ—ZHf(rﬁ), reD (A22)
and

2
/ & x H(r)- V x L(r,r')ds = S=YE* ('), 2’ > 0
oS 2

2
= k’YE(r') - %—YE: (), reD. (A23)

Inroducing the definition of I and the currents J, = 2 x H
oo g and Js = & x H on § we obtain the first of two main
representadons which we state as
Theorem A.3
If (E.H) solve she indenied screen problem, then

/J,(r) x VG(r.1"Ydo+ / Js(r) x VG(r.r')ds
. S
)
= 2“ (l‘ ).a > 0

= H(r') + %H,‘(r;).r' €D

(A.24)
and
/[J.(r)-VVG(r.r')+k’J.(r)G(r.r')]da
-e-/fJ,(r) TTG(r.r') + k35 (r)G(r.r'))ds
s

= -*T}E‘(r').:' >0

= ~ikYE(r') + ";}'E:(r;).r' € D.
(A.25)

The first part of this theorem establishes the represenwation
(3.16). To obtain the second vital representation choose a to
be E and V 1o be D in (A.17) and successively take [ to be
L; and then T, which then yields

Theorem A.4 if (E. H) satisfy Maxwell's equations
inDanda x E = 0 on S, then

2/(i x E(r)) -V x [(r.r')do + ikZ/ 6 x H(r)-L,(r.r')ds
L 4 s

= ~k?ZH(r').r' € D
= -k*ZH,(r)),¢r' € D

= O.X" € Dl (A:G)
and
2 /i x H(r) -L(r.r')do +/ nx H(r) - L,(r.t")ds
Je s
=1kH(r').r' € D
= -1kH,(r)).r € D
=0.tr € Dy. (A.2D

We reczll that Dy is the upper half space excluding the
image of D and S. In armiving at this theorem we have used
the boundary conditions satisfied by E,I'; and L', as well as
(A.15) and (A.16) to simplify expressions containing I'; and
L', on o. Using the definiton of I we see that (A.27) es-
tablishes the representation (3.17). Additional representatons
may be obtained by choosing a 10 be H in (A.17).

Combining (A.20) with (A.26) to eliminate the term involv-
ing 2 x E on o leads to

;%/(ﬁ x H(r))- .l:.l(l',rl)ds = H'(r'),r' e Df
S
= H.(r’) -+ Hi(r:),ré e D
= H(r’) +H:(r£),r' eD
(A.28)

thus establishing the representation (3.18). Taking the curl of
both sides of (A.28) we obtain
/ i x H(r) - V x [y(r.r')ds = k*YE*(r'),r' € Dy
s
= k?YE*(r') - R*YE(r}),ri € D
= k’YE(r') - k*YE!(r)),r' € D
(A.29)

which establishes (3.19). In carying out the computation
leading to (A.29) wz used the facts that

9Gp _ _9Gp 9Gp _ _9Gp 9Gp _ _9Gw
9z =~ 9z 9y 8y  az Oz
and
3Gy _ 3Gy 8Gy _ _9Gy 0Gy _ 8Gp
ar' =~ 8z "8y 8y  br Oz
(A.30)
10 show that
Vix[a-Lire)]=A -Vx[ir.1) (A.31)

for any vector A constant with respect to the primed variables.
The right-hand sides of (A.28) and (A.27) are not con-
dnuous for ¢’ en S;, the image of S. Ho .cver, because of
the singularites in [, and [, the integraus on the left have
jumps, not only when r' — S but also when ¢ — §,
for then r, — S. It is these jumps that allow us to denve
the integral equations. The integral equations follow from a
straightforvard application of ac following
Theorem A.5 (Mi'ie [22)) Let B denote the
smooth boundary of a domain V and 1 point away from V.
If J is continuous on B then
lim a x

r'—B=

/ J(r) x CGlr.r'Vds
B

= :;:-;—J(rx -0 x / Jir) x VG(r.r')ds
B
(A.32)

where r' — B~ means ' — B from the exienior of V andg
t' — B~ means v' — B from the interior of V.
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Applying this result to equation (A.24), letting z’ — 0 and
recalling rhat for 2’ = Q,

ix BH'(r) = 2 x H(r') - 2 x BY(r) = J,(+') = 3°(r"),

(A.33)
we obtain
3 x _/ Jo(r) X VG(z,1')do
+ 2 X / Js(r)' x VG(r,v')ds
s
=3,(+) - %Jo(r'),r' o (A34)

But when r and r’ are on o, then %1‘} =0and z J, =
Zz-2z x H = 0; hence, the integral over ¢ vanishes and we
arrive at

Zx / Js(r) x VG(r,1')ds = J,(x) — %J"(r').r' €c
s

(A.35)
whic* is equaton (3.20).
Fipally we apply Theorem A.5 to (A.27) by letting r’ — S.
Using the definitions of [, I», Jo and Jg we may rewrite
(A27) as

2_/‘,J,(r) X vc;(r.r')dc+/s.ls(r)-v
x [G(r e - G(r, r)(L; — 22)]ds
=H('), reD. (A.36)

The only singularity in the integal over S as ¢’ — S is in
the term

Js(r) Vx G(r.r'j = Js(r) x ¥G(r.r")
so that Theorern A.S applies directly yielding

2a’ x / Je(r) x ¥G(r.r')do + ?'I; X / Js(r)  La(r.r')ds
o s

= %Jg(r'). reSs (A.37)
thus establishing the validity of (3.21).
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1. Introduction

In this paper we show how a ncvel iterative technique can be used to reconstruct complex
indices of refraction of two-dimensional objects from measurements of the field (acoustic or
electromagnetic) scattered when the object is illuminated by known sources. The method is an
extension of the ideas presented in [9,10]. Essentially the method involves casting the inverse
problem as an optimization problem in which the cost functional consists of two terms, one is
the defect in matching measured data with the field due to a particular index of refraction and
the second is the state equation, an integral equation in which the index of refraction appears
and which the field must satisfy. A modified gradient method is employed to solve the
optimization problem. By modified gradient we mean that the update of the index of refraction
takes place in the direction of the gradient of one term of the cost functional, while the update
of the field involves a successive over-relaxation method.

Successive over-relaxation is one of a number of iterative methods for solving operator
equations which emerge as special cases of general technique based on least-square error
minimization, see [7,11,22). In a recent paper [8], the application of the over-relaxation method
to the integral equation arising in scattering from an inhomogeneous object was presented.
There it was shown that the iterative solution of the direct probiem converged for much larger
indices of refraction than those for which the Born series converged.

The Born approximation or Born series is well known as a tool in attempts to solve inverse
problems wherein one tries to determine an unknown index of refraction from measurements
of a scattered field on some measurement surface exterior to the scattering object. The essence
of this approach involves making an initia] guess of the f{ield in the objeci, the Bom
approximation, then determining the index of refraction to minimize the discrepancy between
the far field and the measured data, next solving (ne direct problem with this newly determined
index of refraction in order to update the neld in the object and then determining a new index
of refraction to minimize the discrzpancy in the far field. This iterative process is continued
until the defect in matching the measured data is reduced to an acceptable level. Essentially
the updating involves a linearization of the highly nonlinear dependence of the field on the
index of refraction. In general there are no rigorous convergence results but the scheme has
proven to be of practical utility, see e.g., [2.5,12.17.19].

Our approach. inspired by the success of the over-relaxation method in solving the direct
problem. avoids the necessity of solving a direct problem at each step of the iteration. Instead
the field update directions are chosen as in the successive over-relaxation method to be the
residual error in the integral equation while the index update involves the gradient of the
defect. This involves the introduction of two relaxation parameters which must be determined
at each step. They are found by simultaneously minimizing the residual errors in the field
equation and in matching the measured data. This procedure retains the nonlinear relation
between the two unknowns.

In the next section we introduce some notation, formulate the problem more precisely, and
present a3 little more detail on previous approaches to the inverse problem. Section 3 presents a
brief summary of the relevant over-relaxation results for the direct problem. The new algorithm
for solving the inverse problem is given in Section 4 and the results of some numerical
experiments using this algorithm in recovering the index of refraction of a two-dimensional
object are presented in Section 5. These results are promising in that they successfully
reconstruct indices of refraction of fairly general shape.
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2. Notation aud problem statement

Let D denote the interior of a bounded domain in R?, with piecewise smooth boundary. A
precise mathematical characterization of the assumed smoothness is given in [8]. Erect a
Cartesian coordinate system with origin in D and denote points in R? as p = (x,, y,) and
q=(x, Yo ). The subscripts will be omitted when there is no danger of confusion.

Wc assume that the penetrable inhomogeneous object D is irradiated successively by a
number of known incident fields u!™, i=1,...,1. For each excitation, the direct scattering
problem is modelled by the following transuu'ssio’n problem. For a given incident field u*(p)
determine u; in D and uf™ in ext D) (exterior of D) suc™. that

USH e yyiRC 4 g0t (1)
[V2+ kn2(p)|u;(p) =0, almost everywhere in D, (2)
[V2+k?|u*(p) =0, inext D, (3)
=y, onadD, (4)
dui™  du,
rohiewd on ap, (5)
du p
lim r1/3| — — iku$| =0, uniformly in p = —, (6)
rewo [ ar ] pl

and u; and Vu; are continuous in D, but v? u; may not be if the complex index of refraction
n(p) is dxscontmuous Here u™ is defined in R2 and is analytic in D, k is assumed constant
with Im(k) > 0 and the complex index of refraction n(p) is piecewise Holder continuous in D.
Furthcr agau denotes the derivative in the outward direction normal to 8D, and r:=|p|
= yx? +y2.

Introduce the complex contrast y by

x(p)=n*(p)~1. (7)
Then the direct scattering problem may be reformulatcd as the domain integral equation

w(p) = ul™(p) + klfpx(e)u,-(q)v(p, g)dv,, peD,i=1,...,1, (8)
where

v(p, q)=iHP (k1P —ql). (9)
If u; solves (8), then the scattered field is obtained from the representation

4 (F) -szDx(q)u.-(q)v(p, Gydrq, peextD,i=1,...,1 (10)
Introduce the operator notation

G(xw.-(p)-szpx(q)u‘(q)v(p, q)dv,, peD, (11)

(x)ui'
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If x is restricted to lie in L (D) (which includes piecewise continuous functions), then (8),
which is simply

L,udp)=u™(p), peD,i=1,...1, (13)

may be considered as an equation for u,(p) &€ L¥(D) where the norm and inner product are
1/2 :
||u,-||o={_/;)lu,(p)lzdup} ,

(14)
(a4, “i.2>D"j;3"i.1(P)‘7i.2(1’) dv,. :
Assume thai 4" is measured on some subset § Cext D. S may be a surface enclosing D or
a set of discrete points exterior to D. Define a norm and inner product on S by

1/2
lgills= {Jl;lé.’,-(p)l2 ds,} , if S is a surface,

J 172
- { ) l8:(p;)! 2} , if S consists of J discrete points p;,
=1

(15)
(8iyr 8izls™= /;3:.1(1’)3-’1'2(11) ds,, if §is a surface,
7
- . J
= 2L &(p)8ia(p)y  HES={piy
i=1

Denote by g,(p), p € S, the measured data for each excitation i, { = 1,..., I, and introduce the
operator notation (compare (11))

Kupx(p) =K [ x(@)u0)¥(p, q) dvg, P ES; (16)

in what follows it is convenient to distinguish between the operator as a mapping of yu; to D
and to S, respectively.

The profile inversion problem is that of finding x for given g;, or solving the equation
Kuyx(p)=8(p), PES, i=1,...,1, (17)

for x subject to the additional condition that u; and y satisfy (13) in D. The ill-posed nature of
this problem is well known [3]. A frequent approach is to attempt to find y and u; to minimize
i 8;— K yxlls. Since u; depends on x through (13) in a highly nonlinear way, most
attacks on this problem embody two principles; first a linearization of the ronlinear depen-
dence and second a regularization of the optimization problem. The process is usually carried
out iteratively in the following way: if 4, ,_, is found, determine x, by minimizing i lgi-
K(,,u_l)x,, Ilg_ using some kind of regularization and update u;,., by solving the equation

teo¥in ™ ui". The starting value is usually taken 10 be u;, = u;* (the Born approximating).
This essentially follows the idea of [16] and has been utilized in various forms by mauy
investigaters [1R,24,25].

Our approach follows this same line of reasoning and incorporates the idea of [25] in using
the state equation itself as the regularizer. A novel fearure of our approach is that we avoid
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solving a forward problem (13) at each step of the iteration by generalizing the successive
over-relaxation methed [11,22] to solve the direct problem. This avoids the linearization implicit

in other approaches [18,24,25].
Specifically we will seek u; and y simultancously to munimize the functional

I !
. 2 2
Z l u}“—L(x)ui b Z I gi-'K(u()XHS
i=m1

g lé

T (18)
Y flul3
(=] iw]

Most approaches treat the regularizer as a pepalty term with a coefficient which often must
be taken to be very small. We choose to put the two terms in (18) on equal footing and
normalize them in the sense that they are both equal to one when u; =0, i=1,..., 1.

The iterative solution of the direct problem is summarized in the next section and provides
the motivation of our choice of correction direction for the field in the inversion algorithm.

3. The direct problem

Details of a number of iterative procedures for solving the operator equation L, u; = ulne
are presented in [7,11,22]. For our problem of many excitations they consisi of constructing
sequences of functions {u, 5., and associated residuals {r; ,}7., for each i where

Tim :=u;:"°—'L(x)U,-'n, nz0, =1,...,1 (19)
In the stationary over-relaxation method the sequence of functions {u,,} is defined as follows
for each i:

u;, arbitrary, w,,=u;, ,+tar,.;, nzl, (20)

whereas the correspondirg successive over-relaxation algorithm is
u;o arbitrary, W, =u;,_,ta,r,_;, nzl,

!
> (Tim-1> L(x)ri.n—l>D
a, = il I ¢ (21)
T N Liyyrin-y 15
=]
The difference in the two methods lies in the relaxation parameter. In the stationary method
there is a single, possibiy complex, parameter o which must be chosen in some manner while in
the successive over-relaxation method there is a new «, at each step which is completely
specified by the requirement that it be chosen to minimize /., Il 7, Il p. It should be noted
that what we call stationary and successive over-relaxation methods are simple examples of
. what [13] calls generalized over-relaxation methods. These are operator analogues of Richard-
son’s iterative method in matrix theory (see, e.g., [23, p.141)) and are descent methods with
fixed or variable relaxation parameters or direction coefficients (see, e.g., [6, pp. 61£f.])).
For one excitation it was shown [8] that if Im(x) 2 0, Im(k) » 0 and y is piecewise Holder
continuous on D,.then there exists an a such that (13) may be solved by the stationary
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procedure. That is, for each i, the sequence u;, generated by (20) converges in |+ | », to the
solution of (13). No recipe for finding the best choice of « is available but numerical
experiments showed that by choosing « to minimize || r;, Il p, which leads to the explicit choice
a=(riy, Lyio?n/ I Lo Il 3, resulted in an iterative method with a wider range of conver-
gence than the Born series which is the stationary over-relaxation method with « = 1.

While a convergence proof for the successive over-relaxation method is not available for the
integral equation under consideration, numerical experiments indicate not only convergence,
but also more rapid convergence than in the stationary case. In the stationary case it is shown
[8] that it is always possible to choose a relaxation parameter so that the spectral radies of

" I—aL,) is less than one, so that the iteration converges. Numerical experiments [11] have
shown that the successive over-relaxation method clearly converges for a range of contrasts
where the Born series diverges and converges faster than the Born series when the latter
converges.

The success of the successive over-relaxation method in the direct problem suggests the
generalization to the inverse problem described in the next section.

4. The ipversion algorithm

Here we propose an iterative inversion algorithm which incorporates the ideas of successive
over-relaxation with the choice of relaxation parameters determined by minimizing residual
error. Of course now there is an unknown function x aad a vector function u;, i=1,...,1I,
while two error terms are incorporated in the functional (18). This generalizes the results of
(9,101 10 muitiple sources and higher dimension.

Bearing in mind the fact that the data may consist of a discrete number of measurements
from which the unique reconstruction of a completely arbitrary function wuuld be impossible,
we recast the problem somewhat. Introduce two families of linearly independent functions
{6,(q), g & D)., and {y,(p), p €S)/.,. Rather than to attempt to reconstruct y we limit
ourselves to reconstruct the projection of x on the linear span of {¢,,)¥. ,, an approach also
used before [24]. Thus we assume

M
x(g)= L Xn®m(q)- (22)

m=1
The choice of the functions &,, is somewhat arbitrary but with an eye toward an eventual
convergence proof, not presented here, the families {¢,,}%., should be uitimately dense (as
M — =) in the space in which the function x is sought. Further, {¢,} should be piecewise
Hdlder continuous on D in order to be consistent with the assumptions on y. In addition these
functions should be chosen to incorporate any a priori information about x that is available. In
the absence of any such information the ¢,, may be chosen to be polynomials or finite-element
functions. The choice of the fuactions ¥; is also arbitrary, although it would be convenient if
they were mutually orthogonal on S. If the surface S is a circle or sphere, an obvious choice
would be circular or spherical harmonics, in which case the expansion coefficients of the data
would be (g;, ¥;)s. In the event that the data are available only at a discrete number of sample
points, p;, j=1,...,J, a useful choice is &,(p) =8(p —p,), in which case the inner product

(8.¥;)s 1s interpreted as the linear functicnal (g,, ¢,)s = g,(p,).
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We propose to find the projection of x on the linear span {¢,,}/,, which minimizes the error
in the projection of g;— K, ,x on the linear span of {a,l:j),.’_,. In order to do this we express
functions on § as vectors whose components are projections onto ;. First define the
coefficients in (22) as an M-component vector

T
X =(X1 X2+ Xp) - (23)
Next introduce this vector y into (11) with the definition
M
Gipii ™= L XmGontis ' (24)
o]

and in addition

L(x)ui = u" - G(:)ui' (25)
Now define J-component vectors from furnictions on S so that the measured data g,(p) becomes
the data vector

2= (8o W5, (80 Y)ss 0 (80 U0)s) (26)
and in addition

Kopx = ((Kpx* 62 U1ds, (Kt &, U)seen s (Kpx* 6, Upds) (27)
in which x-é =Z¥_,x,,¢,, Define the residuals on D and on § as

n= “f‘nc - L(x)uh Pi=8; _K(u,.)X~ 7 (28)
We then propose the iterative construction of sequences {u, ,} and {x,} as follows:

;o= UM, Xo=0, (other starting choices may be made)

Ui = Uy T AT s Xn =Xn-1 1 Brd,, (29)

Iim = ulre — Liybi Pin=8 —Ku yXn

where a,, and B3, are in general complex constants which are chosen at each step to minimize

7 I
T dd Y lipald

Fy= H— -+ izl - (30)
Dlulels Xlgls
=] j=]

Here, the residual errors can recursively be written as
Fin =1 et “'anL(x,,_,)"i.n-x +BnG(d.)ui.n-1 + “mBnG(d,,)"i.n—]v (31)
. 31
Pin=Pin-s =K Xno1 = BaK(y,, Ay~ a,B K. _d,. '

Note that for each n, the vector x, has M components, while p;, and g, have J components
so that by the norm and inner product on S are meant

J
e =2 Kgnvdsl?,
jm 1
o, (32)
(&1 8i0)s= L (&1 U585, ¥l ;

j=1
Implicit in this definition is the assumption that the functions ¥; are orthogonal on §.




24 RE. Kleinman, P.M. van den Berg / A modified gradient method in tomography

In (29) the function d,, which is the updating direction for x,, has to be specified. We
choose d, to be the gradient of the error in matching the measured data at the previous,

(n — 1)st, step. Explicitly, treating y and y as independent variables, we define the M-compo-
nent complex-valued vector d, to be

T
d d 3 I
a'" B (‘a_;\;:’ _332"”, g:_) z " Pi Ilg]ul."l.ﬂ-hx-x:u-l. (33)

1Y e

Carrying out the differentiation we find

I 7
du - ( Z <pi.n-1' k(u,_,_|)¢1>3’ Z <pi.n—l' k(u,_,_,)¢2>5’

i=1 i=1
T
<p"-"“1’ k("l.n-l)¢M>s 4 (34)

._M\

-~
[}
-

where the vector k, )¢, is defined as

Kb = (Kouybrs 9105 CKouy®ms 92051005 Koy U05)' (35)

and the operator K, , is defined in (16).

The minimization of the quantity F, of (30), using (31), leads to a nonlinear problem for the
variables a, and B, at each step, which we solve using the Fletcher-Reeves-Polak—Ribiere
conjugate gradient method [14] to find values of a, and B, which produce a (local) minimum.
The starting values of a, and B, are chosen to be equal to zero. Other solutions of this
nonlinear algebraic equation have not been investigated.

In the next section we will demonstrate the performance of the present scheme for some
representative examples.

5. Numerical results

In this section we present the results of a number of numerical examples. In these examples,
the domain D is taken to be a square and this square is subdivided into subsquares of equal
sizes. In fact, the domain D need not actually be a square. Other shapes can be achieved by
choosing the contrast x to be zero over portions of the square and this is illustrated in our
examples. Hence the inversion algorithm not only reconstructs the index of refraction, but also
locates the scatterer within this square. The integrals in the operator expressions are replaced
by a summation of the integrals over the subsquares. Over each subsquare the field function
and the contrast function are assumed to be constant (the functions ¢,, are pulse functions).
Consistent with this approximation, we replace the integration over each subsquare by a polar
integration over a circular domain of equal surface area. Then, the integrations over the
subdomains can be carried out analytically [15). The operator expressions containing the L
operator or the G operator have a convolution structure and they can then be computed very
efficiently with a Fast Fourier Technique [21].
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The measurement domain S is taken to be a set of powts {p,) equally spaced on a circle
circumscribing the square; so the inner products of a function v on S with ¢, must be
interpreted as

(v, )= v(p))
The sources u™ will be taken to be line sources locatcd at these same points {p,}, so that in

our examples [ =J,

For each configuration we first present convergence results for the direct probiem using both
the successive over-relaxation method and the Born series. We shall compare the R.M.S. error

i
Yolr,l
Em, = (36)
Z [P
=]

as a function of the number of iterations n. These results will be used to support the conje.ture
that effectiveness of the inversion algorithm depends on the rapidity of convergence of the
over-relaxation method for the direct problem and not on the convergence of the Born series.

We then present the results of the inveision algorithm, The measured data were simulated
by solving the direct scattering problem with a conjugate gradient method (CGFFT [21]) while
imposing an error criterion with an R.M.S. error Err, < 107, The reconstructed contrasts are

presented pictorially, and in addition numerical convergence is shown by plotting the profile
error '

tx=x, 1l
Trx] (37)

and the R.M.S. error F}/2, defined in (30).

Err(x.) =

Configuration I

As first example we consider a square object with dimensions of A X A, where A =2%/k is
the free-space wavelength. The contrast profile is given by

X Ty
X= COS(T) COS(—/\—) s (38)

where the origin of the coordinate system is at the center of the object. The object is subdivided
into 19 X 19 subsquares. A surface plot of this profile over the discretized object domain is
presented in Fig. 1. Note that the imaginary part of the complex profile is equal to zero. On a
circle of diameter 2A around the object we locate 10 (line) receivers at equally spaced points,
while the object is irradiated by a (line) source that is located successively at each receiver
location, hence [ =J = 10.

We first solve the direct problem for this configuration by using the successive over-relaxa-
tion method of (21) and compare the convergence of this method with that of the Born series
which is obtained from the stationary over-relaxation method (20) with « = 1. The errors are
plotted as a funcrion of the number of iterations in Fig. 2. Although the Born series still seems
1o converge, at a very slow rate, the successive over-relaxation method converges much faster.
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We secondly solve the inverse provlem. The numerical convergence of the profile error
Em, , and the R M.S. error F}/? is plotted in Fig. 3. It should be remarked that in practice we
are never able to measure tie profile error. This means that the ervor quantity F!/? is the only
available measure of convergence. We observe that with as few as 15 iterations the errors are
decreased to values of about 1%. Some surface plots of the reconstructed profiles are
presented in Fig. 4 for various values of n. the number of iterations. Com parison with the
original profile in Fig. 1 indicates the success of the reconstructions. Note that the imaginary
part of the complex profile function converges to zero as it should. Additional numerical
experiments corfirm that our inversion algorithm reconstructs smooth profiles very accurately
as long as the successive over-relaxation method for solving the direct problem converges
reasonably rapidly.

Configuration Il

As second example we consider an object with discontinuous profile. We assume that the
object consists of two distinct square homogeneous objects contained inside a square domain
with dimensions of d X d. The two objects have diameter of approximately +d and the distance
between them is also id. The contrast or profile function in the larger square has step
discontinuities; y = 0 outside the objects and y = 0.8 inside the objects. This example is
equivalent to that in {1]. However, we use a finer discretization by subdividing the surrounding
squars into 29 X 29 subsquares. A surface plot of this profile over the discretized domain is
presented in Fig. 7. Note that the imaginary part of the complex profile is again equal to zero.
A circle of diameter 24 around the object is equally partitioned by J points. These points serve
as recetver locations, while the object is irradiated by a source that is located successively at
each receiver location, here J=J, We consider three cases, viz. (i) d = A and [ =J =10, (ii)
d=2A and [ =J =20, (iii) d = 3A and [ =J = 30.

We first solve the direct problem for this configuration by using the successive over-relaxa-
tion method of (21) and compare thie convergence of this method with that of the Born series.
The numerical results are presented in Fig. 5. We observe that in the case of 4 = 3A the Born
series diverges, while the successive over-relaxation method still converges rapidly.
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struction for Configuration L.

We secondly solve the inverse problem. The numerical convergence of both the profile error
Er, , and the R.M.S. esror F)/? are plotted in Fig. 6. We observe that for the case d/A =1
the profile error remains high as the number of iterations increases. This is also obvious from
the surface plots of the reconstructed profiles shown in Fig. § for various values of n, the
number of iterations. It appears that the wavelength of the incident waves is too large to
resolve the discontinuities in the profile. Our scheme attempts to reconstruct a band-limited
version of the real profile. This observation is in agreement with that of [18, p.310}, which states
that the expected resolution, using the Rayleigh criterion, is about half a wavelength. We have
also performed an additional experiment with 30 transmitiers and 30 receivers ([ = J = 30), but
we did not obtain higher resolution. Therefore we have performed some more expsriments with
smaller wavelengths, viz. d/A =2 and d/A =3. The reconstructed profiles are presentec in
Figs. 9 and 10, respectively. We indeed see that for decreasing wavelengths a higher resolution

-is obtained; however, we observe a phenomenon similar to the Gibbs phenomenon in the
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problem for Configuration II, for d/A = 1, 2 and 3.

approximation of a discontinuous function by band-limited functicns: there occur oscillations
near the discontinuities and they increase for smaller wavelengths and they accumulace close to
the discontinuities. This confirms that our inversion algorithm is strictly band-limited and the
resolution is determined by the wavelength of the incident waves.

Data with noise

For our latter example with d/A = 3 we investigate the influence of noisy data. We have
added to the data a noise signal with maximum amplitude of 10% of the maximum amplitude
of the data at all data points i = 1,..., 1, j= 1,...,J. It is observed that this high noise level has
oniy a minor influence on the reconstruction process. In Fig. 11 we observe that the profile
error Err,, , in the case of data with 10% noise behaves almost the same as that without noise,
while the R.M.S. error F}’? in the case of noisy data is at a very high level (as it should be).
Obviously, in the case of noisy data, the R.M.S. error F!/2 is not a realistic measure of
convergence. In Fig. 12 the plots of the reconstructed profiles using noisy data are presented.
Comparing Fig. 12 with Fig. 10, we observe the influence of the noise only after large number
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value of the contrast is 0.8.

of iterations. Since the imaginary part of the reconstructed profile has to vanish, the noise is
clearly visible in the reconstructed imaginary part of the profile. We believe that the band-limited
properties of our inversion scheme make the scheme very robust and not very sensitive to the
presence of noise in the data.

Configuration I

As last example we consider an object that has a complex contrast with a nonzero imaginary
part. We assume the profile function of the object to be defined-inside a square domain with
dimensions of 3A X 3A. The profile distribution is given as follows: inside a square domain of
about A X A the contrast is x, = 0.6 + 0.2i; outside this domain and inside a square domain of
about 24 X 2A the cpntrast is y,; = 0.3 + 0.4i; outside the latter domain the contrast vanishes,
so that the scattering object is indeed smaller than the square with side 3A.
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The square is subdivided into 29 x 29 subsquares. On a circle of diameter 6A around the
object 30 receivers are located at equaily spaced points, while the object is irradiated by a
source that is Jocated successively at each receiver location, hence [/ = J = 30,

As in the previous examples we {irst solve the direct problem for this configuration by using
the successive over-relaxation method of (21) and compare the convergence of this method with
that of the Born series. The numerical results are presented in Fig. 13. We observe that the
Born series diverges while the successive over-relaxation method converges rapidly.

We secondly solve the inverse problem. The numerical convergence of the profile error
Err,., and the RM.S. ‘error F!/? is plotted in Fig. 14 (solid lines) and the reconstructed
profiles are given in Fig. 15. A few hundred iterations ars needed for reasonable reconstruc-
tions. Again it appears that the algorithm tends to reconstruct a band-limited profile. because
the profile error remains at a much higher ievel than the R.M.S. error.
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Band-limited profile

In order to investigate the phenomencn of band-limitation, we approximate the original
profile by a finite Fourier series

j-rrx\ /k'zry)
XP = cos ,
,2.‘0 EOX"‘ ( ) <\

whese the origin of the coordinaie system is at the center of the object. The Fourier coefficients
X« are casily determined from the original discondnuous profile shown in Fig. 15. This new
profile is taken to be a new original profile and is shown in Fig. 16. Note that this band-limited
profile closely resembles the reconstructed profile of Fig. 15 (n = 512). Subsequently, we
simulated measured data by solving the forv-ard problem for this given band-limited profile.
With these data we use our inversion algorithm to reconstruct this profile. The numerical
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convergence of the errors are given in Fig. 14 (dotted lines). We cbserve that the R.M.S. error
F!7* in the reconstruction of the original discontinuous profile is very close to that of the
vand-limited profile, but the profile error Err, , in the reconstructed band-limited profile
decreases at a much larger rate. The surface plots of the reconstructed profiles for this
band-limited case are presented in Fig. 16. Comparing Figs. 15 and 16 we see that the
reconstructed profiles are very similar. This supports the assertion that our inversion scheme
reconstructs band-limited approximations of the actual profiles.

6. Conclusions

In [9,10] we proposed a new iterative scheme to reconstruct the constitutive parameters of a
bounded inhomogeneous object from scattering data. The scheme involved the simultaneous
minimization of the error in both the object domain and the measurermnent domain in an
iterative way, The method was formulated and tested in one-dimensional problems, scattering
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by a siab at a single frequency, in which the available data are severely limited (back and
forward scattering). This limitation on the number of data points essentially restricted the class
of profiles we were able to reconstruct to constant and linear varying indices of refraction.

In the present paper we have extended the algorithm to two dimensions where the number
of data points which might be utilized is greatly increased, cven at a fixed frequency, by varying
source and receiver location. The essential features of the algorithm are retained. It is still
based on a successive over-relaxation method for solving the direct problem coupled with a
gradient scheme for minimizing the error in matching measured data. While the algorithm is
more complicated in that a number of different forward problems corresponding to a number
of different incident waves are included, the essential features are the same. It still avoids the
need for solving any forward problems at any stage of the iteration, instead the accuracy of the
reconstructed contrast and the associated field are increased gradually. A number of numerical
exarnples have been presented which indicate that the algorithm is very effective in reconstruct-
ing complex-valucd spatially varying contrasts in cases where the successive over-relaxation
method produces rapidly convergent solutions of the direct problem. The fact that the success
of the reconstruction depends on successive over-relaxation rather than convergence of the
Born series means that it is applicable to a wider 1ange of contrasts and frequencies than other




34 RE, Kleinman, PM. van den Berg / A modified gradient method in tomography

ORJIGINAL PROFILE

\\vﬂ”’ll ”’y?ll'g‘!" %
Wy /l' ”'I AR

‘R\\\\\ R

\\\\“‘

'”ll

III 0‘0,. A
'ﬂm, ,,, “\\\

,.'.‘

REAL PART IMAGINARY PART

&0
e
SRR 4 ‘ N
Sz l;'

2

. -wn,;w.

I
u;’l'l/,[” ’II I' - \‘\ ‘\‘Q ‘! :‘-.\c,

\\
II,I 6", o \\§

'I‘\ 0-

«:252,;-;‘\‘ ‘{"\\
\‘S\{\\

X \\\ \\\ g ..

ne8 n =312

Fig. 16. The reconstructed profiles for Configuration III (band-linited profile).

Born-based inversion methods. The limits on the magnitude of the contrast that can be
reconstructed using this method are still to be explored. We expect that a necessary but not
sufficient constraint on the contrast is that the successive over-relaxation method must
effectively solve the forward or direct problem. However, if a more sophisticated forward solver
were incorporated intc the algorithm, then even wider ranges contrasts and frequencies could
be accommodated, see e.g., [4). This is one item for future research. Another way to possibly
enhance the effectiveness of the method is to buiid into the scheme the distorted Born iterative
method [1,20], but this has yet to be done.

The numerical examples support the contention that spatial variations much less than a
wavelength cannot be resclved. Moreover, the way in which the aigorithm is construcred, it
attempts to reconstruct not the profile itself, but a projection of the profile onto a finite-dimen-
sional space. This cffectively imposes a band-limitation on the reconstructed profiles, which is
confirmed by the numerical exampies.

While we have indicated a number of limitations and possible avenues for future work, the
method as it stands appears to constitute an effective tool for profile reconstriction.
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A method for reconstructing the complex index of refracting of 2 bounded inhomogeneous object
from measured scattered field data is presented. The index and the unknown fields within the object
are simultaneously reconstructed in an iterative algorithiny. The method is a refinement of ecarlier
work which incorporates a more effective way to update the unknowns at each stage of the iteration.
Coasiderable efficiency in the algorithm is achieved. Some numerical exanples are given indicating
the limits on the contrasts which can be reconstructed. Tiwae nidts show that the range of contrasts
that may te reconstrucied is extended over that achievabls with the earlicr work.

INTRODUCTION

In previous work {Kleinman and Van den Berg,
1992] we presenied a povel method for solving the
inverse scattering problem of reconstructing the
index of refraction of an unknown scatterer from a
kaowledge of the field scattered whien the object is
illuminated successively by a number of different
excitations. The method was inspired by the suc-
cess of iterative solutions of the direct scattering
problem, and indeed, these iterative methods
played a crucial role in the inversion algorithm. The
method consists of casting the inverse problem as
an optimization problem in which the cost func-
tional is the sum of two terms: one is the defect in
maichiny measured field data with the fisld scat-
tered by a body with a particular index of refrac-
tion, and the second is the ~rror in satisfying the
equations of state, a system of integral equations for
the field due to each excitation. The index and the
fields are updated by a linear iterative method in
which the updating directions are weighted by pa-
rameters which are determined by minimizing the
cost functional. A variety of chcices for the updat-
ing direction exists, and a relatively simple one has
been made by Kleinman and Van den Berg [1992]
which sufficed to enzble some remarkabie recon-
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structiou.s. 1n the present paper we describe a more
sophisticated choice of updating directions which
results in a much more efficient algorithm, with an
iteration count reduced by approximately a factor
of 4. With this more advanced algorithm we analyze
the limits of reconstructibility in terms of both
object size and the magnitude of refraction index in
some two-dimensional examples, aud the res's of
this analysis are presented. Roughly, the upper limit
of reconstructibility is found to be kdlxpmay| = 6,
where k is the wavenumber, 4 is the object diameter
and |ymy| is the maximum absolute value of the
contrast y. In terms of the index of refraction n, y =
n* — 1. This problem of reconstruction of the index
of refraction has been attached by a number of
different methods. The most notable numerical re-
sults are given by Chew and Wang [1990] and
Colton and Monk [1992] for real refractive index.
and by Joachimowicz er al. [1991] and Habashy et
al. [1992] for complex refractive index. Additional
references are given by Kleinman and Van den
Berg [1992]. Uniqueness for the problem of recon-
structing the index of refraction from scattered feld
data has been proven by Isakov [1990] if the scat-
tered field is known in all directions for plane wave
incidence from all directions ata single frequency, a
situation which is approximated in the present case.

In this paper we will briefly review our inversion
algorithm and refer the reader to Kleinman and Van
den Berg [1992] for more details. Major emphasis
will be placed upon the new choice of update
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directions and numerical experiments that probe
the limits of applicability of the algorithm.

DESCRIPTION OF THE TWO-DIMENSIONAL PROBLEM

Assume that a two-dimensional inhomogeneous
cbstacle D is irradiated successively by a number of
known incident fields u;*, i = 1, -+, I. For each
excitation the direct scattering problem may be
reformulated as the domain integral equation:

Lii(p) = uilp) = Gpxwilp) = 4™, p&€D. (D)

where

Goxuilp) = k2 f 6o, Ox(@ui@) dvg,  PED, ()
D

and

i
G, @ = 7 H("kip — q. @

Here u; is the total field corresponding to the
incident field «/™, k is the wavenumber, y is the
complex contrast (y = n* — 1, where  is the index
of refraction), and p and q are position vectors. G(p,
q) is the free-space Green's function in two dimen-
sions. The inversion algorithm holds equally well in
three dimensions with appropriate choice of G(p,
¢). Gp is an operator mapping L2(D) (square inte-
grable functions in D) into itself. If S is a surface
enclosing D, then the scattered field x4/ on § is
given by Ggyu;, where Gy is the same operator
defined in (2), except the field point ? now lies on S.
Hence G is an operator mapping L*(D) into L2(S).
We assume that «/ ic measured on § and denote
by fi(p), p € S, the measured data for each excita-
tioni, i =1,- -+, J. The profile inversion problem is
that of finding x for given f, or solving the equations
Gsxup) =Jfilp)y  PES. i=1,""-.], (4)
for x, subject to the additional condition that «; and
x satisfy (1) in D for each i. Thus there are two error
measurements involved; the first is the defect in
matching the measured data in L,(5); namely,

Fg;=lfi - Gsxu;ll? (5

and the second is the error in the state equation in
LA(D)
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Fpi=llw™ - Liguilp. (6)

where the subscripts S and D are included in the
norm || ||, and later the inner product (-,-) in L>
indicates the domain of integration. Rather than
seek x t¢ minimize the data error subject to the state
error as a constraint, we combine these two error
measurements into one normalized cost functional:

! i
Lo
F=wp o u® = Logu;ly +ws D, Wi = Gsxuilld
in] =y
@)

where

i - 7 =1
Wn=(2 uué"‘n%) ws=(2 ILﬁ-II}) . @®)

im1 i=]

If the data f; originate from an actual scattering
problem, then there exists y and u; in L,(D) for
which F vanishes. In practice, we approximate y
and u; in subspaces of L2(D), and hence the guiding
principle is to seek yand u; simultaneously in a way
which mipimizes F,

INVERSION ALGORITHM

The basic idea underlying the inversion algorithm
is to incorporate the ideas of a gradient type of
algorithm to iteratively solve the direct scattering
problem together with a similar algorithm for solv-
ing the ill-posed inverse problem. Specifically, we
nropose the iterative construction of sequences
{u; .} and {x,} as foilows:

Uin & Uipg—] T CaVin, Xn = Xa-t + Bnda,

n=12---. %)

The functions v;,, and d, are update directions for
the functions «;, and x,, respectively, while the
parameters a, and 3, are weights to be cletermined.
The residual errors at each step in the state equation
and data equation are defined as

Pin = U™ = Ly lins

Pin = fi ~ GSXnui.n- (10}

and the value of the cost functional at the nth step is

! !
ki
. Fa=wp 3 Irialld = ws 2 lpials.

=] im

(1




Following Kleinman and Van den Berg, [1992] the
values of the parameters a, and 3, are determined
by requiring F, to be a minimum. This leads to two
nonlinear complexly valued algebraic equations
which we write implicitly as

/
. wD 2 Tins -L(x._.)vi.n + Bn,Gpdnvinlp

in]

1
W 2 {Pins Gsxn-1Vin * BaGsdpviats =0, (12)

iml

I

wp X, {FinsGpdnttin-1 + @aGpdnvin)p
iml

1
W E (Dins Gsdaitin-1 + anGsdaviads =0, (13)

i=1
where the residuals satisfy the recursive relations
Fin = Tin-1 = @nL(y, Win + BaCpdnltin-

+ @, B,Gpdnvin, (14)
Pin = Pin-1 = ¥aGsXn-1Vin — BaGsdnitin-1

= anB2Gsdnvin. (15)

Substitution of these expressions in (12) and (13)
results in two equations involving terms determined
at the (z — 1)st step, the directions d,, and v; ,, and
the two parameters a, and 8,. Once the directions
d, and v; , are chosen, we have nonlinear algebraic
cquations in «, and 8,, and the soluticn of these
equations is accomplished using the Fletcher-
Reaves-Polak-Ribiére conjugate gradient method
[Press et al., 1986]. The starting value for a, is
obtained by taking 8, = 0 and minimizing F,, while
the starting value for B3, is found by setting a, = 0
and again minimizing F,. This procedure retains the
nonlinear character of the probiem ai each step in
contrast with other iterative treatments that linear-
ize the problem at every stage [e.g., Roger, 1981).
The essential ingredients remaining are the initial
choices and the update directions.

INITIAL GUESS AND CORRECTION DIRECTIONS

In our previous treatment of this problem [Klein-
man and Van den Berg, 1992] we chose xo = (¢ and
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u;g = 4", The update direction for the field was
directly adapted from the successive overrelaxation
method for solving the direct problem with known
contrast [Kleinman and Van den Berg, 1991] to be
Vin = rFin-)» and the update direction for the
contrast was chosen to be the gradient of the error
in the measured data at the previous, (n — 1)st,
step. In the present work we refine these choices
considerably. As the resuit of many numerical ex-
periments it was found that substantial advantage
could be gained by first reconstructing a best pos-
sible constant contrast, even when the contrast in
reality was variable. Thus the algorithm was split
into two stages, or more precisely, the algorithm
was run twice, first to determine the constanty ™4/,
using d, = 1, and the associated fields /"2, then
using these initial values in the algorithm to obtain
the final values of x, ' nd «; ,. The update directions
were ch.asen in different ways depending on how
rapidly corrections were occurring, the idea being
that simpler directions should be used when possi-
ble. This resulted in significant reductions in com-
putational time.

Specifically, we proceed as follows. Define the
normalized change in the field by

iR -2

1 !
& = (2 "l"i.n - Ui.n-l”lz)) (z ”“l.n-l"é) . (16
i=1 =1

To determine the initial values, we set an arbitrary
switching criterion ¢ and run the algorithm of (9)
with yfual = 0, il = i g =1, and v;, =
rin-1 until €,0; < &, then switch the definition of
Yin 10

i
2 <g;:n' g;:n -g::ﬂ—l)D

i=l
v v,
Vin = gi.n -+ YaVin—-1 Y = "’

i
2 llotnnill

i=]

an
with the gradient

glv.n = WD(;'i.n—l - in-lGDri.n—l) + WS/\-’.n—IGSpi.A—I .

(18)

where the overbar Qenotcs complex conjugate, and
G is a map from L*(S) to L3(D). The choice of the
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direction v;, in (17) and (18) is the Polak-Ribiére
conjugate gradient direction [Brodlie, 1977], assum-
ing the contrast does not change. Continue this
algorithm until we again achieve &,_y < & The
resulting values are taken as 44! and yiMtdl, At
each step the constants a, and 8, are determined as
described above. In our computations we choose
€ = 0.01; however, this is arbitrary, and other
choices couid be made. No attempt was made to
find the optimal ¢, one that minimizes the number of
iterations.

With these initial choices we run the algorithm of
9) with v; , as in (17) and (18), and d, is taken in
one of the two ways: if e,_; = ¢, then d,, is taken to
be the gradient direciion assuming that the fields do
not change; that is,

1 1
gf.’- -wp 2 E;,,-gGDr‘_,,..l + wg 2 ﬁl.n-lGSPi.n—l»
=] i=]
(19)

whereas if ¢,-1 < ¢ we use the Polak-Ribiére
conjugate gradient direction [Brodlie, 1977]

(98 98- 98 o

lon-lp

Continue the iteration until either F, meets a preset
erTor criterion or ceases 10 change. In all examples
considered we were able to drive the normalized
error F, below 1.5% before it ceased changing with
further iterations.

It should be pointed out that the choice of the
update directions described here is geared to
achieving reconstructions for high contrasts. When
the contrast is low, not only is it unnecessary to use
the sophisticated update directions for the field
given by (17) and (18), iti actually Leneficial to use
the simpler update direction of the successive over-
relaxation method for solving the direct problem.
The update directions for the contrasts. however,
should still be chosen as in (19) and (20). An
explanation for this behavior is that for low con-
trasts the first few iterations in thce successive
overrelaxation method for solving the field equation
converges faster than the corresponding number of
iterations in the conjugate gradient methed. Thus
for low contrasts, corrections in the field based on
the overrelaxation method are preferable to these
based on the conjugate gradient methods. What
constitutes a *‘low’'’ contrast is determined by he

dn =g+ yiday,  ¥Es= (20)
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rapidity of convergence of the overrelaxation
method for solving the direct problem. In the in-
verse problem, such information may not be avail-
able, in which case, tests may have to be run using
both choices for the field updates.

NUMERICAL EXAMFPLES

In actual numerical examples a discrete form of
the algorithm was used. In these examples it was
assumed that the unknown scatterer was located
entirely within a test square of known dimension,
although knowledge of the precise location within
the test square was not assumed. This test square
was partitioned into J% equal-sized subsquares, and
the integrals over the domain D in the algorithm
were all carried over this test square. The position
of the actual scatterer is determined as the support
(nonzero values) of the reconstructed contrast. The
domain integrals were approximated by assuming
that the contrast and fields were constant on sub-
squares. The resulting integrals over subsguares
were approximated by integrals over circles of
equal area, which were calculated analytically
[(Richmond, 1965]. The discrete spatial convolu-
tions of the Gp operators were computed using fast
Fourier transform routines [Van den Berg, 1984].

The measurement surface S was chosen to be a
circle containing the test domain. The incident
fields were chosen to be line sources parallel to the
axis of the scatterer considered as a cylinder in &7,
These sources were taken to be equally spaced on
the measurement circle, and the source locations
were also chosen as discretization points on the
circle. All integrals on S were approximated by
point collocation at the discretization points, that is,
the rectangular rule with the integrand evaluated at
the end point. The measured data were simulated
by solving the direct scattering problem with a
conjugate gradient method [Van den Berg, 1984].
The forward solver was run until a residual erver
criteria of 10 7% was met; that is, n was taken large
enough so that wp L, |lr ./l < 1679, This inver-
sion method is illustraied in 2 number of examples.

In the fu st two examples the test square was d =
3A on a side and was divided into 29 x 29 sub-
squares (J = 29). The measurement surface was a
circle of radiys 3A. There were 3§ measurement
stations equally spaced on the circle. each of which
served in turn as the location of a line source (/ =
30).

e
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Flrag = 0.004
Fig. 1. Reconstruction of complex copurast.

In the first example the actual profile was inho-
mogeneous and complex, consisting of a square of
dimension A X A with contrast y = 0.6 + 2/,
surrounded by a larger square, 22 X 2\ with con-
trast x = 0.3 + 0.4i. Qutside of this square the
contrast was zero, so that the scattering object was
snaller than the test square. The actual profile is
shown in Figure !. This example was aiso treated
by Kleinman and Van den Berg (1992}, who used

the earlier approach. Here we use the algorithm
described in the present paper. A constant y'2fd
was first found using d,, = 1 until ¢, < 0.01. Then,
the Polak-Ribitre directions (19) and (20) were
employed. The field update directions were always
chosen to be those of tne successive overrelaxation
method, v;, = r;,-;, as the contrast was suffi-
ciently low so that the Polak-Ribidre directions (17)
and (18) were fot needed. The results of the recon-
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nm=2

nwid

n=3

nmGi

n 128

Fias = 0.002

Fig. £ Reconsuuction of reai coutrast: limiting case of kd = 6 and xpux = 1; 30 stations.

struction are shown in Figure 1, where the switch- scheme. Thus the new definition of the update
ing point is indicated. After 128 iterations, when directions for the contrast resulied in a savings of
F3 = 0.004, a reconstructed profile was obtained approximately a factor of 4 iun iterations.
which required about 512 iterations using the earlier In our second example we considered a higher
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original profile

n =128
dm 0.3 Xnas ™10

Fiay = 0.015

Fig. 3. Reconstruction of real contrast: limiting cases of
kdxpax ™ 6y 20 stations.

maximum contrast so that the Polak-Ribiére direc-
tions were used in both field and coutrast updates.
The actual profile was sinusoidal in both x and y,
X = sin (mx/d) sin (wy/d) for 0 < x, y < d = 34, so
that kdlxmax| = 6w The actual profile and the
reconstruction are shown in Figure 2. We start with
the simplest scheme in which we use the field
update directions of the successive overrelaxation
method (SOR in Figure 2) v, = ri,~;, and the
constant contrast update directions 4, = 1. As
shown in Figure 2, this simplest scheme was used
until n = 8. Then with a switching criterion of ¢ =
0.01 the Polak-Ribiére directions were used only for
the field updates until n = 32 after which they were
used to update both field and contrast. The original
contrast was well constructed after 128 iterations at
which point the cost functional had a value of F
= 0.002. Experiments with higher values of kd|x,, |
indicaied that the algonithm failed 1o reliably recon.
struct the profile.

Additional examples were investigated to deter-
mine how object size and |xy,,| individually influ-
ence the reconstruction, as the amount of data
diminishes. In these examples the test square was
still divided into 29 x 29 subsquares, the profile was
still sinusoidal, with y = xpax Sin (wx/d) sin (my/d),
and kd|xmax] = 6. However, three different pairs of
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values of test square dimension d and yg.x were
tested: (1) d = 3A, ymax = 1. (Q)d = A, xpax = 3. and
(3) d = 0.3A, xmax = 10. Moreover, the number of
source and receiver stations was reduced to 20, / =
20. For each case the full method was employed
using a switching criterion of ¢ = 0.01. The resuits
after 128 iterations are shown in Figure 3. They
show that the loss of data causes most instability at
the shorter wavelengths, whereas spatial resolution
diminishes at longer wavelengths. In obtaining the
results in Figure 2 with 30 stations and those of
Figure 3 for d = 3A, xmax = 1, it was found that 56
iterations were needed to obtain the initial guess for
the case with 20 stations, while 38 were needed with
30 stations. Moreover, the values of the functional
in (11), which was to be minimized were Fpg =
0.013 for 7 = 20 and F 53 = 0.002 for I = 30, almost
a factor of 10 smaller.

CONCLUSIONS

An iterative method for complex profile recon-
struction has been considerably refined to achieve
significantly greater efliciency. These refinements
have been described, and the limits of the new
algorithm have been tested. The method combines
the features of successive overrelaxation, gradient,
and conjugate gradient methods to minimize a func-
tional consisting of normalized errors in satisfying
the field equation and the error in matching the
measured data. The field equation serves as the
regularizer for the ill-posed problem finding a func-
tion in L1(D) to minimize the error in solving (4).
The nonlinear optimization problem is not linear-
ized; however, the two components of the func-
tional in (7) are treaied somewhat separately. The
algorithm was constructed to delay large changes in
the contrast until the field was somewhat stable.
This was the motivation for the separate treatment
of the initial guesses as well as the subsequent
switching in the algorithm based on the magnitude
of the change in consecutive approximations of the
field, e,. The numerical results presented here, as
well as additional experiments indicate that the
algorithm successfully reconstructs complex con-
trasts for £d|xmax| = 6. To achieve reconstructions
for large valnes of y.,, low-frequency measure-
ments will not suffice to give reasonable resolution.
Further work is directed toward extending the
method to include measurements at more than one
frequency to accommodate larger contrasts. The
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algorithm appears to be stable with respect to noise.
We checked the effect of introducing random aoise
equal to 10% of the maximum value of the data, The
algorithm was run, and at each iteration the real and
imaginary parts of the contrast were set equal to
Zere if negative values were obtained. The recon-
structed profiles displayed a noisy distortion
roughly equivalent to the magnitude ci the noise.
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Abstrast. A method for recoustructing the location and the shape of a bounded
impenetrable object from mcasured scattered field data is presented. The algorithm is,
in principle, the same as that used for reconstructing the conductivity of a penetrable
object and uses the fact that for high conductivity the skin depth of the scatterer is
small, in which case the only meaningful information produced by the algorithm is the
boundary of the scatterer. A striking increase in efficiency is achieved by incorporating
into the algorithm the fact that for large conductivity the contrast is dominated by a
large positive imaginary part. This fact, together with the knowledge that the scatterer
is coustrained in some test domain, constitute the only a priori information about the
scattercr that is used. There are no other implicit assumptions about the location,
connectivity, convexity, or boundary conditions. Some refnements of the algorithm
which reduce the number of points at which the unknown function is updated are
incorporated to further increase efficiency. Results of a number of numerical cxamples
are preseated which demonstrate the effectiveness of the location and shape

reconstruction algorithm.

Introduction

Among the many inverse problems of curreat
interest there are two general classes of primary
concern in acoustics: electromagnetics and seis-
mics. One class involves the determination of the
constitutive parameters of a penctrable scutterer
(e.g., local sound speed, index of refraction. con-
ductivity), while the second class is concerned with
determining the shape of the boundary of an impen-
etrable scatterer. In both cases the location and
orientation of the scatterer is also of interest. The
data from which these reconstructious are at-
tempted consist of a knowledge of how the object
perturbs known exciting fields at points exterior to
the object. When the exciting field is one or more
incident waves it is standard to use a knowledge of
wheiher ithe object Is pencirabic or impencirabic as
a priori information in designing reconstruction
algorithms. Even whe.n the methods stem from the
same mathematical approach such as the use of
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complete families [Angell er al., 1986, 1989] or
Hexglotz wave functions [Colton and Monk, 1987,
Colton and Kress, 1992], the algorithms specifically
Incorporate information as to whether the scattering
object is penetrabie or not.

The preseut paper describes a2 method for recon-
structing the location and shape of the boundary of
an impenctrable object without making the a priori
assumption of impenetrability. In fact, the algo-
rithm is precisely the same as that used for recen-
structing the conductivity of a penetrable object and
uses the fact that for high conductivity the skin
depth of the scatterer is small, in which case the
only meaningful information produced by the algo-
rithm is the boundary of the scatterer.

This work is a further developmient of the method

described by Xleinman and Van den Berg [1992) for

reconstructing the complex index of refraction of an
unknown scatterer from a knowledge of the field
scattered when the object is illuminated succes-
sively by a number of different excitations. The
method consists of casting the inverse problem as
an optinuzation problem in which the cost func-
tional is the sum of two terms: One is the defect in
matching measured (actual or synthetic) field data
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with the field scattered by a body with a particular
index of refraction, and the second is the error i
satisfying the equations of state, integral equations
for the field produced in the body by each excita-
tion. The index and the fields are cach updated by a
linear iterative method in which the updating direc-
tions are weighted by parameters which are deter-
mined by minimizing the cost functional. A simple

choice for the updating directions was made by .

Klzinman and Van den Berg [1992] which sufficed
to enable some remarkable reconstructions. A more
sophisticated choice of updating directions was
described by Kleinman and Van den Berg [1993]
which resulted in a more efficient algorithm. This
algorithm was tested to determine its limits, and a
rough estimate of the upper limit of reconstructibil-
ity was found to be kd|yy| = 67, where k is the
wavenumber, 4 is the diameter of the domain of
investigation, and |ympay] is the maximum modulus
of the coatrast y deﬁned in terms of the index of
refractionto be y = n? — 1, This limit was deter-
mined from examples of contrasts with nonzero real
past and is definitely dependent on the algorithm, as
is clear since in this paper we show that by changing
the algorithm, considerable higher contrasts are
reconstructed.

Consider the scattesing object to be an inhorao-
geneous lossy dielectric cylinder with relative per-
meability equal to one and of arbitrary cross section
imbedded in frec space. When the incident excita-
tion consists of electromagnetic waves with the
electric vector X polarized along the cylinder axis,
then the contrast is given by y = ¢, ~ 1 + lolweyg,
where &, is the relative permittivity of the object, &
is the conductivity, g is the free space permittivity,
and w is the angular frequency (time factor is exp
(—iwf)). No atiempt was made to incorporate the
information that &, and o7 weg are nonnegative quan-
tities into the previously described aigorithm. Re-
cently, Habashy et al. [1992, 1994] demonstrated
that by explicitly incorporating this a priori infor-
mation ir.i0 a different algoritlim, contrasts consid-
erably higher than kd|xmay| = 6 couid be recon-
structed. In the present paper we combine this idea
of enforcing positivity together with the physically
miotivated approximation that for large afweg, x ~
ioflwey even if £, » 1, to modify our algorithm
appropriately. This new algorithm is tested using
synthetic data and is shown to be extremely effec-
tive in reconstructing the location and the boundary
of the scatterer. The details of the method are given
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by Kleinman and Van den Berg [1992], and bere we
will present only the essential steps and include the
changes nceded to enforce the a prioni positivity
constraint.

Description of the Two-Dimensional
Problem

Assume that a two-dimensional conducting ob-
stacle D is irradiated successively by a number of
known incident fields u;*, j = 1,++«, J. For each
excitation the direct scattering problem may be
reformulaied as the domain integral equation

Lyu;(p) := uylp) ~ Gpxuy(p) = ul*, peD, 4))

where

Goxup) iw K2 f Gl QY@@ dvg PED, @)

b

and

{
Glp, @) = 5 H*kp ~ q)). (3)

Here u; is the total field corresponding to the -
incident field u }“‘ k is the wavenumbcr. is taken
to be equal to i¢? for real { (§* = o{wso). a.nd p and
q are position vectors. G{(p, @) is the free space
Green's function in two dimensions. Gp is an
operator mapping LAD) (square integrable func-
tions in D) into itself. If § is a surface enclosing D,
then the scattered field 4/ on S is given by Geru;
where G is the same operator defined in (2, except
the ficld point p wow lies on 5. Hence Gg is an
operator mapping L(D) into L2(S). We assume
that uf* is measured on S and denoted by fi(p), p €
S, thc measured data for each excitation j, J =
1, - -+, J. The conductivity reconstruction problem
is that of finding x for given _f} or solving the

equaticns

Gsxu;(p) =f;p), PES, jm=l,+-,J, @

for x, subject io the additional condition that u; and
x = i¢?® satisfy (1) in D for eachj. Thus there are two
error measurements involved; the first is the defect
in matching the measured data in L,(S), namely,

Fsy=Ilfy = iGs{wl|} ¥
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and the second is the error in the state equation in
Ly(D)

Fp = lluf™ = Lagnuyl3, (6)

where the subscripts § and D are included in the
norm || « || and later the inner product ( +, - ) in L2 <o
indicate the domain of integration. Rather than seek
{ to minimize the data crror subject 10 the state
cIror as a constraint, we combine these two error
measures into one normalized cost functional

7 J
Fww 2 llu}" = Lagyugllh + ws 2 L ~ iGseuli3,

Jwl J=l
)]
where

J -1 J -1
wy - (2 i3 and wg = (E Il)‘}ll§> .
wl j=i
8)

In practxcc we approximate ¢ and ; in subspaccs of
L3(D), and hence the guiding principle is to simul-
taneously seek {and 4; in a way which minimizes F.
The functional Fy; is used as the starting point for
many inversion algorithms, Combining it with Fp
as in (7) is less common but has been used before
(see Kieinmun and Van den Berg, 1992, and refer-
ences therein]. Recently, Sabbagh and Lautzen-
heiser [1993] used the same functional in an inver-
sion algorithm. Domain functionals have also been
used in impedance tomography [e.g., Wexler er al.,
1985].

Inversion Algorithun

The basic idea underlying the inversion algorithm
is to combine a gradient type of algorithm to itera-
tively solve the direct scatteying problem together
with a similar algorithm for solving the ill-posed
inverse problem. Sabbagh and Lautzenheiser
{1993] attempted to do this by coastructing one
unknown vector consisting of all the fields and the
unknown coatrast and updating with one gradient
direction and one coefficient. Our approach differs
in that we update each ficld and the contrast sepa-
rately. Specifically, we propose the iterative con-
struction of sequences {u;,} and {{,} as follows:

{N-CA"I +ﬁnfnv (9)

Upn = Upn-y F agvsa,

nm ], 2,00
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For each n, the lunctions v;, and §, are update
directions for the functions u;, and {,, respec-
tively, while the complex parameter a,, and the real
parameter 8, are weights to be determined. The
residual errors at each step in the state equation and
da'a equation are defined as

T = 4™ = Lagdljme Py =S5 —iGs T 10)

and the value of the cost functional at the nth step is

J J
Famwp 2 Irallh +ws 2 logalld, (D)
J=1 J=1

where the residuals satisfy the recursive relations
Tin ™ fin=1 = anLgy uw + 2iBuGpla-1€alljn-1
+2iapnBuGpla-- Ifnv}.n + [ﬁchfzuj.n -1

+ l'a.ﬁ,z.be?.vj... (12)

—iapGs o yn = 2iByGsinm1Enltyn-1

= 1B2GsEu 0

Pin™ Pjn~-1
= diap,BaGsln- 1fu'Uj,n

= iauﬂzasefvj.n- (13)
Substitution of these expressions in (11) results in
an expvession involving terms dstermised at the
(n = 1)st step, the directions ¢, and v;,, and the
two parameters «, and 8,. Once the directions ¢,
and vy, are chosen we have a nonlinear expression
in a, and 8,. As Kleinman and Van den Berg [1992]
did, the values of the parameters an and S, are
determined by requiring F, to be a minmum. This
minimization of the quantity F, is accomplished
using the Fleicher-Reeves- Pola.k-RJblere conjugate
gradient method [Press er al., 1986]. The starting
value for a, is obtained by taking B8, = 0 and
minimizing F,, while the starting value for S, xs
found by setting a, = 0, neglecting the terms of 82
and again minimizing F,. The essential ingredients
remaining are the update directions vy, and £, and
the initial choices ;0 and .

Update Directions

As the update direction for the field we take the
direction




o

R AN S e
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J

2 (G/ne 9fn = 9jn=1)D
PR

Uiy ™ gj':u 4 Vzuj.n =1 7: - I

2 lgtu-ll3
J=i
(14
Here g}, is the gradient of F (see equation (7)), with
respect to changes in the field «;, evaluated at the
(n = 1)st step, that is,

Gin=wp(tym-1 + i3 \Golyn-1)
= stC?.- IGSPJ.A- i (15

wherz the overbar denotss complex conjugate,
").':D'J.il"l(q)-sz G(p' Q)rj.n-l(P) dUpo CIED' (16)
D

and
551’].:4- Q= sz G(P’ Dojn-1(p) dvy, Q€D (D
S

G is an operator mapping L2(D) into itself, while
Gy is a map from L(S) to L4(D). The choice of the
direction v, , in (14)«15) is the Polak-Ribi¢re con-
jugate gradient direction [Brodlle, 1977] assuming
the contrast does not change.

As the update direction for the couatrast we take
the direction

(gﬁn gg - g:- I)D
ok~ ltd

where gf is the gradient of F with respect to
changes in £, evaluated at the {n — 1)st step, that is,

£

Eamgl+ it yim . 38)

J
9i=20n-1 Im [WD E @i -1Gprin-1
J=1

-7
-ws z I?J.,-ldgpj,,..l} (19)

J=1

The choice of the diraction §, in (1819} is the
Polak-Ribiere conjugate gradient direction [Brodlie,
1977] assuming the fields do not change. Note that
the contrast gradient g §(q) vanishes for zero values

=R
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of {x-1(q). We therefore cannot siart the iterative
scheme with a zero estimate for {;, and a more
careful choice must be made.

Initial Choice

The initial choice is determined from a guess of
the contrast sources

" wilg) = I Qulw, qED, @0)
that tollow from the linear data equation
Gswi(p) = fi(p), pES. @@n

In contrast to Habashy et al. [1992], we do not
solve this first-kicd intsgral equation, but we take
an cstimate

wio(@ = yGsfi(Q.

The constaat y is determined by minimizing the
erior, see (3),

(22)

J J J
> Esg= 2 LG =Gswialli= 2 Ui ~ ¥GsGsflik
i=1

Ly J=i
(23)
This leads to
J
> G GsCsfs
Jw=i
Y- 7 (24)
3 1GsCsfill}
=1

With tbe initia] estimate for the contrast sources
W an initial estimate for the ficlds w;y follows
from the state equation (2) as

ujo(p) = uf*(p) + Gpwio(p), pED. 2%

Once the initial estimatas for the contrast sources
and the fields have been determined an initial esti-
mate for the contrast (o ({p > 0) follows from a
inimization procedure of the error in the constitu-
tive relationship (20) {see Habashy et al., 1994). For
the initial estimates this relation is rewritten as

(26)

Im [w,0(q),0(Q)) = {5(Q)luy0 (@)
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In order to meet this relation for all j we use the
ideas of Kohn and McKenney {1990] and minimize
the cost function

1 (w0 (@)d;0{Q)]
lu4;,0(0)]

J
VA
Fq = (lo(q)

/=1

2
- (o(Q)IHJ.o(Q)I)

{Im [w;o(@d;0(@Q]*
lupol@l?

:
1 ! 2
f_.,l { o + $o(Wluso(q)l

= 2 Im [wyo(@d;0 (Q)]}~ @n

Note that only the first two terms in the second
expression depend on {o. Minimizaion of this ex-
pression yields

; A\ IR
{Im [w,0(Qi;0(@1
luj0 ()]

FLE
(H =

» q€D. (23)

> lugo@?

=1

With the expressions of (25) and (28) the initial
estimates for u; and {, have been determined, and
the iterative scheme is now completely defined.

Numerical Examples

In actual numerical examples a discrete form of
the algorithm was used. In these examples it was
assumed that the ucknown scatterer was located
entirely within a test square of known dimension
although knowledge of the precise location within
the test square was not assumed. This test square
was partitioned into equal-sized subsquares, and
the integrals over the domain D in the algorithm
were all carried over this test square, The position
of the actual scatterer is determined as the support
(nonzero values) of the reconstructed contrast. The
domain integrals were approximated by assuming
that the contrast and fields were constant on sub-
squares. The resulting integrals over subsquares
were approximated by integrals over circles of
equal area which were calculated analytically {Rich-
.1ond, 1965]. The discrete spatial convolutions of
the G operators were computed using fast Fourier
transform routines {Van den Berg, 1984},

The measurement swface S is chosen to be a
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circle containing the test domain. We assume that
the radius of this circlé is large enough so that the
far-field approximation of (4) may be employed, and
the far-field coefficient is the quantity of interes: so
that the dependence on the radius is removed. In
that case the data may be written as

i 2 \2 L s
e ~3 —) exp (i/dpl—f ;)f;'(p). Q9

kil
and the data cquation (4) may be replaced by

f exp (—ikp - Qx(Wuy(q) dvg ~f7'(), PES, (30)
D

where P is the unit vector in the direction of
observation and § now denotes the space of these
uait vectors, the upit circle. Further, f*(§) is the
measured far-field data. In the examples we mea-
sure the farfield at 30 stations equally spaced
around the object. Each of the stations serves in
tum as the location of a source (J = 30), and the
incident fields can be approximated as plane waves.
All integrals on § were approximated by point
collocation at the discretization points, that is, the
rectangular rule with the integrand evaluated at the
end point. The m=asured data were simulated by
solving the direct scattering problem for an impen-
etrable circular cylinder. The anaiytic solution in
terms of Bessel functions has been employed. The
radius a of this circular cylinder was 0.015 m. Our
reconstruction of the location and the shape of this
circular cylinder is illustrated in a number of exam-
ples.

Exarmple 1

In the first example the test square was divided
into 31 x 31 subsquares of 0.003 x 0.003 m2. The
wavelength is A = 0.090 m, so that ka = «/3. The
measured data were calculated for the cylinder with
origin at the center of the test square. We then
solved the inverse problem using the algorithm
described in the previcus sections, and the eior
F1? is plotted in Figure 1 (solid line). Although it is
very bard to minimize the error in the fields inside
the impenetrable object, we are still able to reach an
error Jess than a few percent. Some surface plots of
the reconstructed profiles (the imaginary part of the
contrast y) are presented in Figure 2. We indeed
observe that after a relatively small number of
iterations only the boundary of the object becomes
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Figure 1. The error K2 as a function of tts number of
iterations.

visible, and the location and shape of the object can
be estimated. Specifically, we observe that after
~16 iterations the imaginary part of the contrast at
the boundary becomes larger than six, and only the
contrast at the boundary of the object remains
increasing when we increase the number of itera-
tions. At 64 iterations the contrast at the boundary
hay reached values from 10 up to 25! This result has
also been presented in Figure 3, where we have
plotted the contour lines Im [y] = 12.5. The exact
location of the boundary of the object is indicated
by the dashed circle. The outer contour line almost

m—— Imy] =125

~=—=- Exact boundary

Figure 3. Comparison between the recoastructed
boundary and the exact one of example 1 (n = 64).

coincides with the exact boundary, and we choose
this as the reconstructed boundary.

Example 2

In the second example we consider a smaller
waveiength: A = 0.030 m, so that kg = 7, We then
solved the inverse problem, and the error K2 is
plotted in Figure 1 (dashed line). Some surface plots
of the reconstructed profiles (the imaginary part of

2. The reconstructed imaginary values of the contrast for example 1. At n = 64 the largest ’

value is 25.3.
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Figure 4. The reconstructed imaginary values of the contrast for example 2. At 1 = 64 the largest

value is 6.02.

the contrast y) are presented in Figure 4. After only
four iterations the boundary of the object is clearly
visible. Specifically, we observe that after about
cight iterations the imaginary part of the contrast at
the boundary becomes larger than one and cnly the
coutrast ai the boundary of the object remains
increasing when we increase the number of itera-
tions. After 64 iterations the contrast at the bound-
ary has reached values from 2 up to 6. This result is
also presented in Figure 5, \vhere we have plotted
the coniour lines Im (] = 2.5. The exact location of
the boundary of the object is indicated by the
dashed circle. The outer contour line approximates
the bounda:y very well.

Examypde 3

In the third example we still have A = 0.030 m,
however, the measured data were calculated for a
cylinder located close to a comer of the test square.
ihe reconstruction is shown in Figure 6. It shows
that our scheme not only approximates the bound-
ary of the obiect very well, but aiso the location is
detenmined pirecisely. This is-stressed in Figure 7,
where afier 64 iterations the contour lines Im [y] =
2.5 bave been plotted. Again, the exact boundary of
the object is indicated by the dashed circle.

Beunded Contrast Reconstruction

In our examples we have scen that our scheme
indeed recounstructs the location and the shape of an

impeiuetrable object by reconstructing the imagi-
nary contrast &t the boundary. However, the recon-
structed contrast at the boundary becomes highly
oscillatory after a couple of iterations. The peaks
2ppear to increase with the number of iterations,
aad it becomes difiicult to choose the level value of
the contour that cstiimates the boundary of the
object. We therefore acopt a slightly modified re-
coanstruction scheme. ¥irst of all we have observed

Figure 5. Comparison between the reconstructed
bourndary and the exact one of example 2 (n = 64).
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n =232 n= 64

Figure 6. The reconstructed imaginary values of the contrast for example 3. At 2 = 64 the largest

value is 8.87.

that there is no improvement in locating the bound-
ary after the contrast has reachec x value such that
the penetration depth of the wavefield is of the
arder of the mesh width in the testng domain. The
visualization of the boundary of the object is im-
proved when we impose an upper bound to the
recoustructed contrast in such a way that the pen-
ctration depth of the wavefield is not less than three

—— Imlx]=25

Exact boundazy

- wm -

Figure. 7. Comparison between the reconstructed

boundary and the exact one¢ of txample 3 (n = 64).

times the mesh width. This factor is chosen to
provide a reconstructed object such that we ob-
serve a ‘‘boundary wall’" with a thickness of two or
three times the mesh width. We therefore require
that the interior (complex) wavenumber k;(q) satis-
fies the condition

Im [k (@3A =1, (31

where A is the side length of a subsquare of the test
domain. From (31) and the fact that y + 1 = k#/k?,
it follows that the maximum reconstructed contrast
Xmax follows from the relation

1
Im [(1 = X)) = TR

(32)
The value of y;., is assumed to be pure imaginary
and is determined numerically. If at some point in
the iteration the reconstructed contrast is larger
than ymay, the contrast is replaced by v, In view
of this modification, the residual errors have to be
recomputed and the iterative scheme restarts with
new contrast directions £,. By enforcing the con-
trast gradients to be zero in all the points q, where
the contrast is equai t0 .y, the contrast directions
vanish in these points, and no updating of the
contrast takes place in these points. Operating in
this way, the scheme is able to ‘‘concentrate’” on
updating the contrast at the remaining points. This
accelerates the reconstruction and visualization of
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Figure 8. The error F)? as a function of the number of
iterations when the maximum reconstructed contrast is
constrained.

the boundary of the object. We illustrate this pro-
cedure for our three examples.

Exainple 1

In the first example with a2 wavelength of A =
0.090 m and a side length of a subsquare of 0.003 m,
condition (32) says that the maximum reliably re-
constructed contrast amounts t0 Ypax = 5.97. We
then solved the inverse problem with this upper
limit, and the error £} is plotted in Figure 8 (solid
line). Some surface plots of the reconstructed pro-

files (the imaginary part of the contrast x) are
presented in Figure 9. After 32 iterations we ob-
serve no substantial improvement in the reconstruc-
tion, as is seen by examining the reconstrucied
profile after 128 iterations. Comparing Figures 1 and
8, the error F(}ﬁz is now much larger, but this is
mainly due to the mismatch in the fields inside the
object. Relaxing our constraint op the maximum
value of tie contrast will decrease this error, but it
does not yield better reconstruction of the boundary
of the object. The reconstruction of the boundary is
visualized in Figure 10, where we have plotted the
contour lines ¥ = yga,. The exact location of the
boundary ui the objcct is indicated by the dashed
circle.

Example 2

In the second example with a wavelepgth of A =
0.030 m and a side length of a subsquare of 0.003 m,
condition (32) says that the maximum reliably re-
constructed contrast amounts t0 yga, = i1.20, We
then soived the inverse problem with this upper
limit, and the error F)}?* is plotted in Figure 8
(dashed line). Some surface plots of the recon-
structed profiles (the imaginary part of the contrast
x) are presented in Figure 11. The result after 64
iterations is also presented in Figure 12, where we
have plotted the contour lines x¥ = ygmax- The exact
location of the boundary of the object is indicated

Figure 9. The reconstructed imaginary values of the contrast for example 1. The maximum

reconstructed contrast is constrained to 5.97.
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Figure 10. Compariscn between the reconstructed
boundary of example 1 (1 = 128) and the exact oue.

by the dashed circle. The outer contour line approx-
imates the boundary very well.

Example 2

The reconstruction of the shifted cylinder is
shown in Figure 13. It again shows that our scheme

Figure 12. Comparison between the reconstructed
boundary of examiple 2 (n = 64) and the exict one.

not only approximates the boundary of the object
very well, but alsc the location is determined pre-
cisely. This is stressed in Figure 14, whers after 64
iterations the contour lines y = yqn,, have been
plotted. Again, the exact boundary of the object is
indicated by the dashed circle.

%= 16

e

;

n w32 nx 64

Figure 11. The reconstructed imaginary values of the contrast for exampie 2. The .maximum
reconstructed contrast is constrained to 1.20.
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n =16

n =32 n =Gl

Figure 13. The reconstructed imaginary values of the contrast for example 3. The maximum

reconstructed contrast is constrained to 1.20.

For this example we also investigate the influence
of noisy datis. We have added to the data a random
noise signal with maximum amplitude of 50% of the
maximum amplitude of the data. The reconstructiou
process is shown in Figure 15. It is observed that

——— Imfy] =120

~w==- Eiact boundary

;|

Figure 14. Comparison between the reconstructed
boundary of example 1 (n = 64) and the exact one.

L

this extremely high noise level yields some local
anomalies, but the location and shape of the cylin-
der is still clearly visible in the reconstructed con-
trast. This example indicates the robustness of our
reconstruction scheme.

The computer code was run on a VAX-4000
workstation. The last example requires about 8
Mbyte memory, while one iteration takes one
minute CPU time.

Finer Mesh

Finally, we present the reconstruction of the third
example when the test domain is subdivided into a
finer mesh. Now the test square is subdivided into
61 x 61 subsquares of 0.0015 X 0.0015 m?. The
reconstruction is shown in Figures 16 and 17.

Conciusions

Axn iterative method for reconstructing complex
constitutive paurameters has been modified to recon-
struct the location and shape of impenetrable ob-
jects by exploiting the fact that, electromagneti-
cally, impenetrable objects are really lossy
dielectrics with very high conductivity so that the
skin depth is very small, hence the data from
impenetrable scatterers is consistent with the re-
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n=16

Figure 15. The reconstructed imaginary values of the contrast for example 3 from data with 50%
noise. The maximuwn reconstructed contrast is constrained to 1.20.

3] PV T U 0 el A Pt Tt TR AYE S {4

construction algorithm. Since the incident field de- neighborhood of the surface. Using this fact, we

- cays drastically as it penetrates the body, the only employ an algorithm designed to reconstruct the
reliable information about the body that can be conductivity (and permittivity) throughout the body
inferred from scattered field data comes from a but give credence only to the boundary of the
support of the reconstructed conductivity when

Figure 16. The reconstructed imaginary values of the
contrast for exampie 3 and a refined mesh, The maximum  Figure 17. Comparison between the reconstructed
reconstructed contrast is constrainad to 3.09. boundary of example 3 (n = 64) and the exact one.
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these valuss are large. Numerical evidence is pre-
sented whick shows the utility of this approach. A
perfectly conducting circular cylinder was taken as
a iarget for ka = w3 and ka = =. The syntbetic data
were obtained from the cxact soistion available
through ihe use of separation of variables, and
exampics were treated for the cylinder both cen-
tered and off centered in the test domain, The effect
of noise was ¢xamined as was the result of refining
the discretization of the test domain. The numerical
examples show that the algonthr; is effuctive in
confining e boundary to an annular domaiu. and
the rusolution increases as the wavelength de-
creases and also as the discretization of the test
domain becomes finer. Moreover, the resuits ap-
pear to be remarkably stable with respect t¢ noise.

The numerical results reported here concern omiy
circular cylindrical scatterers, although the origin
was shifted so as to remove some of the effects of
symmetry. However, the method applies equally to
noncircular objects and has been successful in re-
constructing a noncircular scatterer from experi-
mental data. These results will be reported else-
where, It should also be noted that although the
results reported here involved far-field data, addi-
tional experiments using necar-field data yielded
comparable results. That is, the reconstructions
were of the same quality with the same number of
iterations.

Ongoing work is conicerned with further refine-
ments o male the algorithm more efficient by
successively reducing the number oi points or sub-
squares at which the coutrast is updated once very
large or very small values are attained. Also under
investigation are the improvements resulting when
multifrequency data are used and the perforimance
of the algorithm when real rather than synthetic
data are employed. Results of these studies will be
reported in the future.
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Chapter 31
Full Low-Frequency Asymptotic Expansion for
Elliptic Equations of Second Order -
R. Kieinruant B. Vainberg!

Abstract

The presant paper shows how to obtain the luw {requency expansions of solutions of
a large class of extevior boundary value problems involving second order elliptic equu-
tions in twu dimensinrus. The differential equations must coincide with the Helmholiz
equation {n a neighborhood of infinity, however they raay depart radically {rom the
Helmholtz equation in any bounded region provided they retain ellipticity. The pro-
cedure for determining toa tull low frequency expausion of solutions of the exterior
Dirichlet and Neumann problems for the Helinholtz equation is included s a special
cass of the results presented heve.

1 Introductivn and Formulation of the Main Results
~ Let Q be an uxbounded doynaln in R? with compact infinitely smooth boundary T, let

. 83 )
A= 4>r.1 B (=) g + gb«r)@; + o(2)

be an elliptic operator of the second order (that is the matrix (ai;(+)) is non-siagular) with
infinitely smooth coefficients in €} and aj(x) real valued and let A colnclde with the Laplace
operator A in some neighborhood of infinity. Denote by u, a solutjon of the problem

Au+bluz=f, 260 (1)
By =0, FX-BY .

where B is either the identity (Dirichlet boundary condition) or the following operator

8 ]
Bu = 55 -+ p(:)'é!;- + g(a)u *

2
Here & = ‘3: a,,(x)m;%; is the derivative along the conormal vector (n == (ny,na) is the
=]

unit vector which is normal to I' and directed into ), § is the derivative along I',p,9 €C™
Finally denoie by

Riu: La(Q) — HXHQ), lmk> 0 o
SRR
t Uaiversity of Delaware, Newark, Delaware 19716 ey
b ‘University of North Carolina, Chaslotte, North Carolina 28223 ‘ o
§ it
206 ~
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the operator which takes functions f € L2(f) into solutions nf problem (1) Lelonging to the
Sobolev space F2(R).

With a au arbitrary constant we define a cutoff junction X = x(z) € C*(51), such that
x = 1 when |z| < u and x == § when {z{ > a + 1. Then a restricted resolvent is defined ax

Ry = xRux : La() ~ HY (D).

‘The operators R, Ry are defined and are meromorplic functions of & when Imk > 0. More-
over the operator Ry Imk > 0, has a meromorphic continuation on the Ricmann suvfuce of
the fuaction Ink(see {1]). Let us stress that Ruf = xJeuf if / = 0 for |z] > a. In this case the
furction u= Ruf is a solution of (1) for || < a.

The present work is devoted to the study of the asymptotic bekavior of the uperator
Ry (that is of the solution u = R/, |z] < a of the problex (1) with 7 = 0 for |z| > a) a5
k -+ 0. We consider only the two-dimensional case, since in sther dimeasions the asymptotic
.behavior of the solution of this problem is much simpler. The most reccat results for the
two-dimensional case as well a5 extensive re{erences to earlier work are found in [2]. There
the problem was supposed to be formally self-adjoint (i.e. (Au,v) = (u,Av) for functions
u, v € C3°{Q) satisfying specified beundary conditions) and nonpositive, or to be more exact
jt was supposed that

g - T

(Au,u) £ -a f |Vulddz, a >0 forallue C{,’"(ﬂ) with Bujp = 0. 3)
a

Here (-, -) denotes the inner product ja Ly(£2). For this case [2] gives the asymptotie babavior
of the solution u = u;i of the problem (1) with accuracy O(k3).

However more than ten years ago, in [1], there appewed results of one of the present
authors concerning the low-frequency asymyptetic behavior of solutions of general elliptic
prodlems of any order polynomially depanding ou the spectral purameser. Thosa results
apply to problem (1) and allow one to obtaia the full asymptotic expansion of the operator
Ity as [k} = 0. This expansion has the form

. w mi kz
w2 k=2 R LY 1k
Risk=ay” Z[P(lnk')]m ™k P, 1] << 1, (4)
mulinwl
where a is an integer, £ is a nou-negative integer, P is a polynomial with constant coefi-
cients, and P : L3(Q) -~ H3(Q) are bounded cperators independent of .

The integers a and £ and the polynominl P are rat known in general, even for equations
of 2nd order. It is the purpose of the present work to ipecify the precise fosrm of expansion
(4) for solutions of two restricted cases of problem (1).

Case L The space of bounded solutions of the homogeneous prohlem

Au=0,z€Q; Bu=0,zel )]

consists of only the trivial solution.
Case I, The space of bounded solutions of (5) is one dimensional and if u is a noatrivial
solution then

lim u(z) # 0. ©)

and the formal adjoint ta problem (5) (see (13) below) also has a bounded solutior with
property (6).
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The exterior Dirichlet problem for the Helmholtz equation is an example of Case I while
the exterior Neumann problem for the Helmholtz equation is an example of Case II.

It is well known that if u is 2 bounded solution of Laplace’s equation in a neighborhood
of oo then for r sufficiently large, u bas the form

o0
u(x) = Co+ 3 _{an cosnp + ba sinng)r-n (N

In particular this representation is valid for bounded solutions of problem (5) and of problem
(1) with k= 0if f w 0 iz a nelghborhood of infinity. Therefore, condition(6) is equivalent
to the requirement that Co 3% 0 for such solutions.

The conditions embodied in Cases I and II are less restrictive thaa those used in (2], If
conditicn (3) required in [2) is fulfilled then togeilier with (7) it follows that there are only
constant solutions of problem (5). ‘This means that either Case I or Case Il apply. Ia our
work wa do not require nonpositivity, condivien (3), nor do we require that the problem be
self adjoint. Moreover we obtain not only the first few terais as in [2], but the complete
asymptotic expansion of the solutious.

Uunlike {2} we consider (for simplicity) only the problems in which the boundary and
coeflicients of the equation are infinitely smooth.

The main resuits are coutained in two theorems which are presented in this paper. Let
o be au arbitrary fixed constant such that I is contained in the circle 2] < a—1 and [ =
0 when |z| > a. Lot Qu = QN{z:|z| < a} and A = A +k? when 2| > a~ 1. Let Ly, be the
space of functions which belong to L2(Q) and are equal to zerc when |z| » a. In particular,
.f [ L!.--

In Case I we denote by uo,uy .he solutions of the problems

Avp = [, 2CN 8

Bug=0,2€0; (|usj<oasr—oco : ®)
Auy =1, z€Q; ©)
Buy=0,z¢el'y |[yu=-Inricwasr-—=m

{Aug:O. PXRY

Bua=0,z€l;, |lu+ }a;xx + ?;b;:.':l CooASY -0 (10)

where a1, are the coafficients in the expansion (7) for up. We show that the uniqueness of
the solution of problem (8) leads to the solvability of this problem. After we have established
this, we can easily infer the unique solvability of problems (9) and (10) by reducing them
to problems of the form (8). This is accomplished by writing the solutions v, and s of
probleras (9) and (10) in the form vy = ylar+ vy and uz = ~k(arzy + b122)¥ + wy, Where
% = Y(z) is a cutoff function which is equal to one¢ for |x] > o and equal 10 zero o some
neighborhicod of T. Then the problem of finding wi is of the form (8). Moreover since the .
expaasion (7) is valid for wi, in particular the constant Y

. PREYS

Ao = hm (u1 1!\7‘) - g:'_{}.x"i

L lm‘/m

is defined. Finally, we dencte by 5 the constant which oceurs in the asymptotic exP“-“‘b“ :
of H("(x), the Hankel function of the first kind and order zero: :

Hé”(z) ) %_1(111: - 3) 4+ O(=%lnz), z = 0.

+
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Vet

With this notation established we now state the main results. ,,'_-';3“!‘.}

TEEOKEM L. In Case 7 for the solution u = R,f of problema (1) with f € Ly, the
following asymptotic expansion is valid when ~5 < argk € %, [k~ 0:

Mol

N m
u= 33 T it k(ink = do = B)Pumnp(z) + iGN (12)

muwOned =l

where umnyp(z) are independent of & and
linllar gy € COE2IRENH | flle, 0.

The leading terms of the asympiolic ezpansion have the Jorm
u = up(z) + m—_%’mm(s) + k3lnkus (=) + O(42)

where uo, u3, uz are the solutions of problems (8) - (10) and Co = lim ug(x).
Romark: Lu fact the corresponding expsnsion for the operator R4 converges in the operator
norm for 0 < |k} < |Ae| for sowme |ko| > 0 and therefore the infinite series for u(N = o)
converges in H2(5l.).

In Case 1T let us dezote by vo the solution of problewm (5) such that

'I.Ln;x‘ vo(z) = 1.

Let the problem
A*u= 0,26, D'u=0 xe€rl (13)

be formally adjoint to (5), that is, the operator A= cxn be obtained frem A by substitutiag
b for by and &~3 géf forc. If B =7 then B* = I, if B has the form (2) then B* has tha same
form with p instead of p and -%{ - §4+ S bz insvead of ¢. H u,v € C= (1), and Bu =
B v=0onl then

/Auivd.::: /u,{'vd:c+ /(%gﬁ-u%g)ds. R>a
Na -

Nin rmR

We show that the space of bounded solutions of problem (13) in Case [I iz also cue
dirnensienal and there exists & unique solution v, of problem {13) such that

Yin vo{z) = 1.
ree03

Let us denote by v; the sulution of the inhorsogeneous problem (b) (that is the solution of
problem (1) with & = 0} such that

vy -~ o{lnr = ) — 0 as r — oo

where @ = o(f) is constant. We show that in Casa IT such a solution exists, is unique #nd

a= —l-/fi;.d: (1)
2
i



300 Kleinman and Vaisberg

THEOREM 2. In Casc I for the solution u == Ryj of preblem (1) with f &€ Lue. the
Jollowing asymptotic expansion is vaiid when —§ < argk 5 ¥, (k{—0:

Impl

u= L 3 Emlnk wma() + Gy (15)

misl nml

WAEre Um,, are independent of k and
llinllzrein,) < Clap@® 2 Mk fl|L,.,
The leading terns of the asymptotic expansion Aave the form
u = alnkvo(z) + vy (z) + O(k3In’k), {k] =0

where o 1§ defined in (14).
ffuvosE] then uma 20 forn > m+ 1,

Ramarks.

(1) The remark following Theorem { also applies here.

(2) Iv is not difficult to write out the sequence of problems similar to (8) - (10), from whick
we can find all the coeflicients in the expansions {12} and (13).

(3) In the present work we have assuined that the data f is independent of k. In many
applications, of course, f will be a known function of k. In such cases when f may
developed iu a series in &k the presant apalysis will still apply. The result will be the
product of the expansion of the inverse operator, Ry, ¥ith the axpansion of f.

Theorems 1 and 2 are proved in a similar fashion and the deiails will be presented
elsewhere. Here we will provide an outline of the main ideas in the proof of Theorem 1.
It cousists first of establishing the expansion

o= ug+ u;(:)+0(k3 In” k), €N k—0 (13)

Lz
Ink=X -0
for the solution u = Rif of problem (1) with f € La. 3nd uo, w1, Co, Ao and 8 as in Theorem
1. This expansion is obtained from the asymptotic expansion of the resolvent in (4), the
differential equation (1) and an integral representation of the solution (actually an integral
equation) based ou Green's theorem, namely

n(z)u(z) = 5‘;/ﬂ(1nk+1n [z~ yl=~ B+ O(k? Ink))(u(¥)Ayn+2V,u-Vyn)dy, = € IR?, k —~U (17)

where n € C(R) and nm 0, fzl<a=-1, n=1 |z|>a=-4}

The last step of the proof is based on a special parametrix of problem (1). This
parametrix involves the opzvater U which is defined as that operator which taps any -
function f € Li4 into the sum of the first two terms on the right hand side of equation (1€). ;
Thexr choosing ¢ € C=(IR®) such that { = 1 for x| > a ~1 and ¢ =0 in a neighborhood ofl‘
we define the operator &, as =

Guh = (1 =~ nUh~ ‘.f- /n H (kle — gD Ay (nURVdy. - “(wf.f

]
Now we assume a solution of problem (1) in the forin u = ®4h with ueknown & € h§
This leads to the equation (7 + 1i)4 = f for A, where the norm of T} is small by "“‘“
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Foa
equation {16). This allows us to obtain an asymptotic expansion for {I +T.)*"- amf v‘;ea
for Ry = &l + T4 ..
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Asymptotic Approximation of Optimal Soiutionz
of an Acoustic Radiation Problem!

T. S. Angell and R. E. Lleinman

Center for the Mathematics of Waves
Department of Mathematical Sciences
University of Delaware
Newark, DE 19716

and
B. Vainbuirg
Department of Mathematical Scieuces
University of North Carclina
Charlotte, NC 28223

Abstract We have presented, elsewhere, the problem of choosing Neumann data
for the exterior Helmholtz equation in order to optimize a functional of the radiated
far field. I~ this paper we use asymptotic methods te determine an approximate

optimal soiution whose support is in a prescribed :gion of the boundary.

1. Introduction

Let Q be exterior of a strongly convex bounded obstacle B C IR" with infinitely

smooth boundary I’ Let u be a solution of the problem

(A +E)u =0, zef
o ik wer
%ﬁ—zku:o{r‘?‘), T — 00

where A is an ipfinitely smooth fucction and d/8n is the derivative in the direction

of the (exterior) normal which is directed into the unbounded region.

1 AFOSR # 86-0269



It is well known that problem (1) is uniquely solvable. Let us denote by T
the Neumann-to-Dirichlet operator, which transforms % into u Ir, where u is the
solution of problem (1). This operator, initially defined on smooth functions, can
be extended as a bounded operator on the whole space L*(T") since T is a pseudod-
ifferential operator of order —1 [9,10]. Let us introduce the following norm in the
space L*(I):

MBI = =21l Za ) + I TRl sy

It is also well known that the solution u of problem (1) has the asymptotic
behavior in the far-field:

n—l
ro3

z cibr -1
u=f 'lz_lvk —-—(1+0(1‘ ))77'—’00

where f(6,k), 6 € 5", is a smooth function which has the form

2 f(0,k) = fn / [+ ik < 8,8 > Thle~**<0w>4g
T
Here
(n-3)/2
1 k
(3) ﬂn = .Bn(k = —Z; (5‘”—:) .

Let a = a(#) be a piecewise continuous non-negative function on the unit sphere.

Let the functional F be defined by

F(h) = / £(8)2a(6)dS, h e LA(T),
SR—I

wheve S is the element of surface area.

We are interested in the maximum value of the functional F' on the set U of

functions A in L*(T') with ||JA{]] = 1. In addition we are interested in characteriziag

2




the functions A, !||A|l]] = 1, where F attains its maximum. The existence of such

functions h follows from the results of [1], [2].

In order to formulate the main result we need to introduce some notation. Let
the mapping P : I' — S"~! transfer each point z € T into the point § € §"~! for
which @i = 0, where @ is the unit vector of exterior normal to I' at the point z.
Note that we will use the symbol 6 to denote both a point on the unit sphere and
the position vector of that point. For an arbitrary e > 0 we coanstruct a function
ge = ge(0) such that
@ [ 1a@ras=1, [ looFa)ds 2 supa(s) - .

Sn=1 Sn=1
It is obvious that we can take
1/2
se=v/( [ loPes)
Ssn=-1
whee ¢ is any function on S™~? with support in a region where a(d) > supa(f) -«
Let x(z) be the total curvature (product of the principle curvatures) of I at th

point z € .
The main result of the paper is contained in the following theorem.

Main Theorem. 1. If [||A||| =1 then
(5) 0< F(h) < %supa(G).

2. Let € > 0 be an arbitrary positive numbler, ¢, be a fixed function (independent
of k) which satisfies the relations (4) and

) he = h(z) = i;z—’ig((h)\/n(z)-

3




Then

(7) ladll=1+0(k™"), n = oo
and there exist ko = ko(e) such that

® F(h) > -;uma.x a(6) — 2¢
i k> k.

From this theorem it follows that if

E- = hc/mh‘l”

then F(h,) differs from its maximum value on the set U = {k € L*(T) : |j|l]| = 1}
by not more than 3¢ if k is sufficiently large.

II. Asymptotic Behavior of the Solations of the Problem (1)

Theorem 1. If h is independent of k then there exist infinitely smooth functions
a;{z) such that the solution of the vroblem (1) has the following asymptotic expaa-
sion:

M

©) u = *SES g5 (z) (k)1 + up]

0

where () is the distance between a poiut z and I, a; € C'*°(Q), ao(z) = h(z) on
- T and

|6%upn| £ CE™N72 2] € a, k21

for any a < o0, a = (ay,...,ay) and some constaut £ = C(v, a, k).

4




Corollary: If z € T then
u = (k)" h(z) + k"

where the function u; = u;(z, k) and any of its derivatives along T’ are bounded

when & > 1.

This result is obvious from the point of view of physics. But the strict math-
ematical proof is not very simple, as the problem under consideration Juvolves two
large parameters: as |z| — oo, the unique solution is singled out by (radiation)
conditions, and, as k — oo, we are interested in the asymptotic behavior of the
solution. High frequency asymptotic results have been obtained previously for the
problem of scattering of plane waves by an inhomogeneous medium (3),[4] and by
obstacles [5],(6]. However our results are much simpler due to the fact that in the
present cases h is independent of k¥ (or has a “simple” k dependence) so that no
caustics occur. In order to prove Theorem 1, we will follow the same technique

introduced in (4] and employ the noustationary problem, corresponding to Problem

(1)
10 v - Qv =10, . zeQ, te R,
(o) el =hB(t)e~* teR; v=0,t<0,

where 8 € C, 4(t) =0 whent < 1/2, (1) = 1 when ¢t > 1.

The connection between problems (1) and (10) is established by Theorem 3,
below, the principle of limiling amplitude. However, we will need more accurate
estimates of the remainder thon these which arc usually wsed in that priaciple. For
this we ueed the following uniform estimate of the solutions of the initial-boundary

value problen with bemogeneous boundary data

{w“—Aw=0, €N, t>0

(1) %lr:;lr =0; :w|t=0 =0, w”tno = f(=)

5




where f € L3(Q), f(z) =0 whea J¢| > a.

Theorem 2 For any a there exists Ty = Tp(a) such that the following estimates

are satisfied
(12) 16i 92w < ClBvIfliza, t > To, |z < a

where 7 and a = (a,...,an) are arbitrary (non-negative integers), C' depends on

a, j and « but not on f and

—at TN
n={e" e>0, if n is odd
() {t""‘lnt if n is even

This large time behavior of w may be obtained from Theorems 4 and 6 of Chapter
10 in [4].

Remark: This theorem shows that the solution and all derivatives decay as ¢ — co
uniformly with respect to the initial data if n > 2. If n = 2 it is possible to show

that (w — €1 In ¢ ~ &) will decay for some constaats ¢&;, &;.

Now we establish the limiting amplitude principle in the form which we need for
1
the proof of Theorem 1. Let ¢ € C®(IR), ¢(t) =0whent < Qort>1, [@(t)dt =
2
1.

Theorem 3. The solutions of problem (1G) can be represented in the form of

(13) v=u(z)e™* 44

where u is the solution of problemn (1) and for any a < o0, T > To(a) + 1, any N

and a = (ay,...,an), the following estimates are valid for v,

T+1
(14) oz [ wep(e~Todel <CETY, el S a k21
T




with constant C = (a, T, N, a, h) which does not depend on k.

Proof, With no loss of generality we car: assnme that 02 C {z : |z] < a}. Let ¢ be
a function such that v € C°({1), ¥ = 0 when |z| > q, -?ﬁ’- =k on I'. It is obvious

that the function
(18) v = tb(r)ﬁ(t)c"“" + wy 4+ we

is the solution of the problem (10) if wj, 7 = 1,2, are solutions of the following

problems

FRw;—-Awj=f ¥ zed, telR,
(16) {%'—f;tlr=0, te R w;j=0,t<9
where
(17) f = filz k) =(A+k)
(18) fa = falt,z,k) = (B - 1)fi — (8" - 2ikf’)

From (17) and (18) it follows that
(19) fi(z, k) = 0 when |z] > a, and || Allz,@) < C(1 + %)
(20) as well asf2(, z, k) = ( when l.‘l:l >aort> 1, and Ile”L’(ﬂ) < C(l + kz)
It follows from (16), (20), Theorem 2 and Duhamel principle that
. la:a:wZI < C(l + kz)la{'T(t)l, lzl o, t2Th+1

where C = C(h,a,j,a) does not depend on k. It evidently follows from here that

for w, the estimate (14) is valid with any T > To + 1.

7




Further, let w be the soluticn of the problem. (11) with f = f;." Thex from the
Duhamel principle it foilows that

#

¢
(21) wy = c""“/w(r,x)c""'dr =¢ % lim /w(r, z)e'hirdr,
51—**+|0
0 0

If Im k; > 0 the function

o

u(z, ki) = /w('r, z)e'be T dr

0
belongs to L*(2) and is the solution of the provlem
Ou
(A+ku=-f, s 5l =0.
We can now invoke the principle of limiting absorpiion which iraplies that
) ~
3 ik, o
k;%—io f w(r,z)e'* "dr = uy(z, k)
2
where uy is the solution of the problem

du

; 5n——z'ku=o(rl:5‘"'), r — oo.

()  (A+Ru=-h,ze® =0

This means that we can rewrite formula (21) in the following way,

o

wy = e~y ~ eh k--li?-ll-io / w(r,z)e’® 7dr =
t
N4l \-1 B oy (N-+2)
. = o=ikiy (t 1') ikt w (m2) ar
(23) -5 ey e
=0 1

where |z]| < @, ¢ > 1o = To{a). For the second equality when we iniegrate by parts,

we used the following estimate which is a consequence of (19) and Theorem 2

(24) 6{82w] < C(1 + k*)|8{~(t)], |z| < a, t 2 To.

8




From (23) and. (24) it follows that for w; ~ ¢ ***u; the estimate (14) is valid for

any T > To. As we proved estiraate (14) for rva we have that

v = c-ikt(¢+,u1)+v1

g“ where v satisfies estimate (14). It remains to note that from (17) and (22), it
g follows that function u = ¢ 4- u; is the solutiou of the problem (1). Thus Theorem
&

3 is proved.

We will need the following simple lsamma to prove Theorem 1. Recall that S(z)

e o

is the distance between r and the bouadary [ and let
N
(25) uy = ¢H(S(E)=0) z a;j(t, z)(ik)™4
0
where a; are inficitely smooth functions of z € Qandte R

Lemnma 1. There exist functious g, € C*, Q,t € IR, such thai for any N the

following assertions are valid:

1. (82 = Ay = k~N-1eikS(=)~0pp (¢, 1), where by is an infinitely smooth func-

tion,
2. | = e~ RPN + (k)N 8ax | ),
3 vyw=0whent <10,
4. The functions a; are independent of ¢t when t 2 |z| +a +1.

Proof. This lemma is the outcorne of standard WKB method [7], [¢]. The
Hamilton-Jacobi equation which corresponds to the operator 32 — A is

(2

) = 1va

9




The function ¢ == 5(z) — ¢ satisfies this equation. Heace the first assertion of the
lemma will be satisfied if functions a; satisfy the transport equations. Let us write

them. Geometro-optic rays £ which correspond to the phase function ¢ are straight

rays whicn are orthogonal to I. Let

be equations of these rays. Here 4 is the unit vector of the exteriur normal. It is

obvious that s = §(z). The transport equations are the following

, Zr+ g +3(AS)a =0
(26) So % L 1ASNe = L(P0mt - Ag )
ok + 5L +1(A8)e; = (LA - Agjus), S > 0.
Heve
g% = (a,Va), z € L

The equations (26) are linear ordinary differential equations along space-time rays
EC R, E=28(tg.xe) = {(t,z): 2 =zo+iks, t =ty+s, s20}, 20 €T, tg € R.

So we define the functions a; as the solutions of the equations (25) which sacisfy
the followicg initial coaditions

, " faj- :
ao(fm 30) = ﬁ(tO)h(xO)) a:‘(toﬁto) = "—E’n : (t(l":-l"O)» J > 0.

It is now very easy to check that not only the first but also the other zssertions of
the Lemma are valid. This completes the proof.

Proof of Theorem 1. Fromr Lerana 1 and well-known estiinates of solutions of
the mixed problem for wave equation [8] it follows that ihe solution of the problem

(10) has the following form

A’
(27) v = e SE=O3 g (1,2 )(ik) 7 + dn (2,7, k)]
%1

10




where N is arbitrary and
(28) [62an]| SCh N4 k21, |2l <a, ¢ <T+1
for any 4, 1" and some constzat € = C(x,a, 1)
How we fix a and choose 1' such that
T 2 max(Tp +1, 2a+1)

where 2} is the constapt which is defined in Theor=m 2. From Theorem 3 it follows
that

741
(29) |og j( (6= ¥ v)p(t = Tdt| < Ck~V, x| < a, k> L.

T

Theovem 1 followe from (27) - (29) becanse ihe functions uj{z) are independent

of ¢t when |z| < a4, und ¢t > T\

We now consider the asymptotic behavior of the far feld conefficient of the

snlution in the case that the boundary value is independent of the parameter k.

Theoram 4. If function A does not depeud on k, then function (2) has the following

asywptotic behavior as k£ — o

F(0,k) = .i.léh(p-lo),c-m(P-l9)e~"<f"‘ % 0>k(1 4 o(k=1)).

Remarl:. 1t is not difficult to write full asymptotic expension of the fuaction f.

Proof. The functicu f is defined hy (2) in which the function Tk is that given

in the corollary to Theovem I. Asymptotic behavier of integrals of the type (2) as

11




k — 0o can be obtained with the help of stationary phase method. In particular
Theorem 4 will be obtained if we apply Theorem 9 of Chapter 4 from [4] to the

integral (2). Theorem 4 follows from these remarks.
11I. Proof of the Main Theorem

From. Green’s formula it foliows that

v

st

. - 84
2200 oo -t ——
/I |f12d0 = —k Imju3 dS.
l\

Hence

; 1 { Ou . 1 2
.2 |2 -9 20 1 2
[ 1ide s 3t f1upas+ [k 22 pasy = Lymye,
It is obvious that relations (5) follow from here.

Now let the function h frum boundury vaiue problem (1) be equal to k-1h,
whece ke is defined in (6). Then h is indcpendens of k and Theorems 1 and 3 are
valid for this function A. In particular from the corollary tc Theorem 1 it follows
that

The(z) = 4T'h(z) = —ih(z)() + 0%~ = (z‘k)"h.(z)(l +0(k™)).
Hence

y \/§ : 2 =1 1 ’ 2 1/2- LY
li1hell] = % hdlzagmy( + 0(k™1)) = ( / l9e(Pz)|*w(2)dS) 21 4 0(k~H)).
P

As the Jacobian of the mapping P is equal to x™!(x) the last equality can be

rewritten in the form

Pl =( [ lad@asy 2+ o).
Sh=1

12




This and tke first of the relaticns (4) lead to (7)

As we already meantioned Theorem 4 is valid if A = k~th,. If we multiply
bourdary function h by k then function f is multiplied by k as well. Hezce Theorem
4 is valid if’ A== A, and therefore

/ Ifita(8)do = / B P10k "I(P-*lo)a(o)da(, +0(k1)).

cn-x

Frow here and (G) we obtain

| FPa(8)d8 = - / |9.(8)Pa(8)dB(i + 0(k™1))
Sn=1

This and the second of the relations (4) lead to (8)

Thus, the main theorem is proved
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A method for reconstructing the shape of a bounded impenetrable object frorn mea-
sured scattered field data is presented. The reconstruction algorithm is in prirciple the
same as that used before for reconstructing the conductivity of a penetrable object and
uses the fact that for high conductivity the skin depth of the scatterer is small, in which
case the only meaningful information produced by the algorithm is the boundary of the
scatterer. A striking increase in efficiency is achieved by incorporating into the algorithm
the fact that for large conductivity, the contrast is dominated by a large positive imaginary
part. This fact together with the knowledge that the scatterer is constrained in some test
domain constitute the only a priori informartion about the scatterer that is used. There
are no other implicit assumptions about the location, connectivity, convexity or boundary

conditions. The method is shown to successfully reconstruct the shape of an ooject from

experimental scattered field data in a "blind” test.
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I INTRODUCTION ~

The present paper describes a successful example of the reconstruction of the shape of a
scattering object from experimentally determined scattering data. In contrast with other
inversion methods, the reconstruction is accomplished from real rather than synthetic
data, so there is no chance of even inadvertently committing the "inverse crime” of using
the same numerical method in the inversion algorithm as is used for solving the forward
or direct problem to produce the synthetic "measured” data. The possibility of favorably
prejudicing the outcome of the inversion algorithm was eliminated by a "blind” use of
the measured data in the inversion algorithm; that is, knowledge of the geometry of the
object from which the scattered field was measured was not supplied to these running the

algorithm until after the reconstruction was completed.

The reconstruction algorithm is that described by Kleinman and Van den Berg [1], in
which an iterative algorithm for the recoastruction of complex contrast profiles [2, 3] is
adapted to reconstructing the shape and location of a perfectly conducting scatterer by
making the assumption that the unknown contrast is esseutially non-negative imaginary.

'The experimental data were obtained on the Ipswich Test Range of Rome Laboratories

[4].

II. DESCRIPTION OF THE METHOD

Assume that a two-dimensional conducting obstacle D is irradiated successively by a
number (j = 1,---,J) of known incident fields with the electric-field vector parallel to the
cylindrical object (TM-case). For each excitation. we then have a scalar problem and the
incident electric-field component is denoted as u}* and the total electric-field component

is denoted as u;, For each excitation, the direct scattering probiem may be reformulated
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as the domain integral equation

Ly yus{p) = uj(p) = Goxu;(p) = ul™, peD, (1) -
where
Gpxu;(p) = k’/D G(p,9)x(q)uj(g)dvg, pe D, (2)
and |
Glp,q) = éﬂé”(klpwl) : (3)

Here, k is the wavenumber, x is taken to be equal to i(? for real ¢ ({? = o/wey), and
p and ¢ are two-dimensional position vectors. G(p,é) is the free-space Green’s function
in two dimensions. Gp is an operator mapping L?(D) (square integrable functions in
D) into itself. If 5 is a surface enclosing D then the scattered electiic-field component
ul® = u; ~ u§~"‘ on S, is given by Gsxu,; where Cs is the same operator defiued in (2),
except the field point p now lies on §. Heuce G is an operator mapping L?(D) into
L*(8). We assume that u}* is measured on § and denote by f;(p), peS, the measured
data for each excitation 7, j = 1,--+,J. The conductivity reconstruction problem is that

of finding x for given f;, or solving the equations

GsX“j(P) = f}(P)a peE 51 j= 11"'a~]1 (4)

for x, subject to the additional condition that u; and x

Il

(% satisfy {1) in D for each j.
Specifically we use the iterative construction of sequences {u;,} and {¢,} as follows:
Ujn = Ujn-1 + anV Cn = Cn-vl + ﬂnfnv n= 17 2, (5)

For each n, the functions v;, and £, are update directions for the functions u;, and (,,
respectively, while the complex parameter a, and the real parameter §, are weights to
be determined. The residual errors at each step in the state equation and data equation

are defined as

Ty = uJ ¢ - L(i(ﬁ)umm Pym = fi — iGSC?qu’.n ; (6)
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The constants a,, and f, are determiued by minimizing the value of the cosi functional

J J
Ei = Wwp E ”rJf””?J ..l.. ws Z: ”pjf”“:'; 3 (7)
Jal gl
in which
n wiaic ; | | -1 / i‘ -1
wp = | 3 ™[ and  ws = (2_, 5] (8)
Jm) Jeel

where the subscripis § and U are included in the norm || || in L* to indicate the domain
of integration. Substitution of Eqs. (5)-(6) in the cost functional of Eq. (7) results in an
expression involving terms determined at the (n—1)-st step, the directions ¢, and 'v,-,,,,
and the two parameters a,, and 2,. Once tae directions &, and vj, are chosen, we have a
noulinear expression in v, and 4,. The values of the parameters ay, and G, are determined
by requiring £, to be a minimum. Minjwization of the guantity Fy is accomplished by

solviag this non-linear problem in a,, and f, using a standard conjugate gradient method.

The update directious v, and §, are chosen as the Polak-Ribiere conjugate gradient

directious as in [1], namely
”j,ﬂ == .(/;n "' ‘Y:vj,n--'j and En = K ,E + ‘)'SF,n-l ] (9)

where

3

o

- )
D {50+ Gin=9in-1)0 -
s inT Yin (gi, gs g,'f,_;)D

~
Y 5 - and 4% = ”nC B 1 (10)
-~ i 2 Sn=1i1l0
E_, “g;",n-l H.D ‘
J=1 )
and the pradients are given by
¢t = wp(Time1 + i3 Corin1) — iws(i Gspjnm (11)
and
J __“_ J .
¢ =26 aImwp Y TjnaGprjna —ws Y Tin-1G5Pjnm1]| (12)
j=1 j=1

The operators G p and G's are the adjoints of Gp and Gs, respectively, mapping L*(D)
and L?(S) into L*(D).
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The initial estimates u; and {p are cliosen as ia [1] to be
uj0 = u + Gpwjp, (13)

where ;
> < fue,GeGsfe >s
ui0 = = Gsfi, (14)

J
> IIGsGsfill%
k=1

and
= {Im{w; 0;,0]}2

(o= . (15)

S lusal
15,0l
j=1 /

[II. EXPERIMENTAL SETUP

Here we describe how the field scattered by the mystery object was measured and
calibrated for the reconstriiction. The measurement frequency was 10.0 GHz, thus the
wavelength (A) was 3 cm. Bistatic scattering measurements were made in a plane perpen-
dicular to the axis of the cylindrical object, 30 cm (10 )) in length and the measurement
plane intersected at midllength. For convenience, a Cartesian coordinate sys-tem was ori-
ented with z along the cylinder axis, and measurements were made in the (z,y) plane.
The measurement configuration is shown in Fig. 1. The scattered fields were collected

for incident angles of ¢' = {0, 5,10, 15, 20, 45, 60,90} degrees, over the observation sector

.0 < ¢* < 359.5° with a sample spacing, A¢® = 0.5°.

The object and transmit antenna were fixed for each ¢' and the receive zntenna was
rotated on a semi-circular arc about the object from back scatter to forward scatter record-
ing the total field coincident with the receive antenna polarization. A seccnd measurement

was made with the object removed. This background field measureinent was subtracted
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from each of the total-field measurements to obtain measured data proportional to the
scattered field. The range from the transmit antenza to the object was 3.7 m and the
range from the object to the receive antenna aperture was 2.8 m. Both the source and the
probe antennas had circular apertures 15.24 cm in diameter. With these measurement
ranges and antennas, the object illumination was uniform in magnitude to within 0.2 dB
along the z direction and 1 dB along the z direction. The illumination phase taper over
the object was approximately 10° and 50° in the z and z directions, respectively. We note
that both the end sides (z = %15 cm) of the finite cylindrical object were illuminated
quite strongly and therefore one might expect the measured scattered field would contain
an undesirable diffraction from the edges of the end sides. However in this cxperiment the
planes of incidence and observation were always normal to the z axis, which insured that
the scattered field was dominated by the specular response and the diffraction from the
two truncating sides, being much less, was not observable. Thus, the measured scattering

from the finite cylindrical object was very close to that from an infinite cylindrical object.

The measurement system used can only scan over a 190° bistatic angular sector. This
" means that in order to get scattering data over a complete 360° bistatic observation sector,

. two measurement runs had to be made for each incident direction, one measurement

run to cover the observation sector, ¢' — 3° < ¢* < ¢' + 185°, and the other to cover,
¢ 4 175° € ¢* < ¢' + 365°. The data from each measurenent run must be independently
calibrated and then spliced together to make a complete data set. In this experiment
coverage of the first observation sector for every incident angle of interest (except ¢ = 0),
was accomplished by measurements made in March 1990 . The second observation sector
was obtainad for all incident angles of interest (except ¢ = 90°), by measurements made
in October 1991. The instrumentation radar used in the October 91 measurements was
more sensitive than the radar used in the March 90 measurements so that the March

90 portion of each complete data set had an uncertainty significantly greater than the
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October 91 portion. In addition to a variable uncertainty each data set contained a
sector of completely erroneous scattering centered about the back-scattering direction
(¢' = 5° < ¢* < ¢ + 5°) caused by the interruption of the object illumination when the
receive antenna passed between tihe transmit antenna and object. For each measurement
run we filled in the erroneous back-scattering region by extrapolating the complex data

on ¢ +5° < ¢* < ¢ + 185°, using a least squares linear prediction algorithm [35).

The raw scattering data resulting from the phasor subtraction of the total-field and
background measurements, has a magnitude proportional to the object scattering cross
section per unit length, and a phase proportional to the phase of the scattered electric
field referenced to the center of rotation of the bistatic positioner. Aligning the object
so that its symmetry axis coincides with this rotation axis is practically impossible. Our
calibration procedure must compensate for the phase error caused by this misalignment
in addition to calibrating the magnitude. We calibrated the scattering from the object

by the following procedure. We computed a point calibration phasor,

NN cdlo
YO = X ()

(16)

In (16), P*=* (¢*) is the measured scattered patteru of the object for a particular mea-
surement run, and P%™? (¢*) is the far-field scattering pattern computed for an infinitely
long cylinder that approximaies the present object, but with its symmetrf axis at the
z axis. From the calibration phasor we conmipute an average calibration factor, Wy, and

three constants, a, b, and ¢. The average calibration factor is defined as

1 X .
Uo= 52 [¥(na¢ +4'+5)], (17)
<7 n=l

‘where; N is the number of data points in the given measurement run excluding the

erroneous data in the 10° back-scattering sector. The three constants are determined

such that they produce the best fit (in the least square sense) to the expressinn,

arg (¥ (¢")] = a + beos(¢’ + ¢) . (18)
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This curve fitting step is needed to correct for the misalignment phase error (see [4) for

a more thorough discussion). With those four constants computed for each measurement
run the calibrated scattering cross section per unit length, o' (¢*), was calculated from

the relation,

o (¢*) = W PP (¢°) exp {~i[a 4 beos(4° + <))} . (19)

In this way we have arrived at experimental data that beivags to the object with the
symmetry axis coinciding with the z axis. We note that this procedure was necessary,
because we have only angles of incidence in a quarter plane, and using the symmetry, we
can obtain scattered data from angies of incidence in the full plane. These experimental

data are recalibrated for use in the inversion algorithm as described in the next section.

IV. RECONSTRUCTION

The measurement suiface S is chosen to be a circle containing the test domain. We
assume that the radius of this circle is large enough so tbat the far-field approximation of
(4) may be employed, and the far-field coeflicient is the quantity of interest so that the

dependence on the radius is removed. In that case the data may be written as

. i
1

o E
fj(P)"z(;;;T;I) eXP(lkIPI—l"})JS (#), (20)

and the data equation (4) may be replaced by
[, exp(-ikp- q)x{a)u;(a)dvg = [°(B), PES., (21)

where P is the unit vector in the direction of observation and S now denotes the space of

thesc unit vectors, the unit circle. Further, /() are the measurex far-field data. In the

examples, we taxe from the nmeasured far-field data the values at 36 angles equally spaced

around the object (the domain S consists of 36 discrete points p;). In the experiments
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only 8 excitations are carried out. The incident fields are approximated us plane waves
incident at an angle of 0, &, 10, 15, 20, 45, R0 aud 90 degrees with the z-axis, respectively.
To obtain scattered-field date from jucident waves distributed around the object, we take
udvantage of the a priori information that the mystery object is symmetric with respect

to the planes z = 0 and y = 0. Doing sc we obtain scattered-field date from 28 excitations
(J = 28).

We further have a priori infor:nation that the mystery object lies inside a circle with a
radius of 0.060 m and the frequency of operation is 10 GHz. We ihersfore will assume that
the object is located iuside a test square divided into 63 x 63 subsqnares of 0.002 » 0.002

m?. The discretized version of the algorittom is discussed 1 [1].
Calibraiion

1o test the computer code; we first run the algorithin for synthetic data obtained in
the well-known problem of scattering of a vlane wave by a perfectly couducting circular
cylinder with origin at the ceater of the test square. We eamploy the samne angles of
incidence and data points as used 1n the experimentai case. The analytic solution in

terms of Bessel functions has been employed. The data are denoted as
f;nl(ﬁl) = fjm(ﬁl)a ’ =1,-,28, l=1,-- )36 (22)

T'he radius, a, of this circular cylinder is 0.015 m. The wavelength is A = 0.030 m, so that
xa = . We have seen that our scheme indeed reconstructs the location and the zhape of
a perfectly conducting cylinder by reccustructing the imaginary contrast at the boundary
[1]. However, the reconstructed contrast at the boundary becomes highly oscillatory after
a couple of iterations. The neaks appear to increase with the number of ilerations and
it becomes difficult to choose the level value of the contour that estimates the boundary

of the object. The visualization of the boundary of the object is improved when we

impose an upper bound to the reconstructed contrast. If at some point in the iteration
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the reconstructed ¢, is larger that (mar, the contrast is replaced by {4z- In our example
we take (o = 1. Some surface plots of the reconstrucied profiles (the imaginary part of
the contrast, Im[x] = ¢*) from the synthetic data of the circular cylinder are presented
in Fig. 2. The result at 32 iterarions has alsu been presented in Fig. 2a, where we have
plotted the boundaries of the test domaia and the contour lines { = 1. The exact Jocation
of the boundary of the object is indicated by the dashed circle. The .asymmetry of the
chicice of the incident angles of excitations is clearly visible in the ~2constructed boundary.

We observe that the boundary is located with an error of the sample width.

Next we measure experimentally the scattering from a circular cylinder with the same
dimensions. These data ace denoted as f{™7(p;), j = 1,-++,28, [=1,-.+,36. To calibrate
an overall phase shift between the definitiou of the phase of the measurement data and
the one defined in the reconstruction scheme (and to some extent the a.nplitudes), w

assume that the measured signal is correct apart of a multiplicative complex factor and

enforce the data to be

Jep) = C @), j=1,---,28, I=1,---,36. - (23)

The constant C is determined from the analytical data pertaining to this object by min-

imizing the deviation

J , ) N 36 28
@) - C P @)s = Zl I}—‘ 175(B1) - C £ (), (24)
=1 J=l ==

resulting in

J 36 gi ——s e
Z ﬂn’(p i (D))s ZLffnl(ﬁz)f;‘p(ﬁz)
= J=11=1
C= =% ' 29)
Z“fanl(p Zzlf;xv
ot J=1 =1 '

where the overbar denotes complex conjugate. After substitution of the resulting numer-

ﬂ.a‘“‘ 'ﬂ



BLIND SHAFPE RECONSTRUCTION FROM EXPERIMENTAL DATA . 11

izal value of C into the deviation of Eg. (24), we found that

s
r J ) cens 13
D) - C DG
= = 0079, (26)
2 [FatallF
J=

that is, a mean square deviation of about 3%. Using these recalibrated data, we rau
the inversion algozithm. Some suiface plots of the reconstructed profiles (the imaginery
purt of the contrast, Im[x] = (?) from these calibzated experimental data of the circular
cylinder are presented in Fig. 3. The result at 37 iterations has also beer preseutad in
Fig. 3a, wkLere we have plotted the boundaries of the test domiain and the contour liues

¢

reconstruction using the synthetic data.

1. The reconstruction from our experimental data is not very different from the

Mystery object

Observing that our recons’ruction of the circular cylinder was successful. we now
coutinue: to reconstruct a mystery object from experiinental data. The experitnent=l data
from this mystery object;.‘-‘.'e.re- first multiplied with the complex coastant C', computed
oy ininimizing the global deviation between analytical and experimental daia from the
circular-cylinder case. This ensures that an overall phase shift between the one defined
in the measurements and the one in the reconstruction scheme is corrected. We then run
the inversion wlgorithm and the results of the reconstruction are shown in Figs. 4 and 4a.
1t clearly shows that the mystery object is probably a strip of about a width of 12 cm

cud a thickness of less than or equal to 4 szm.

Finally, we show in Figs. 5 and 5a, the reconstruction in a larger test domain, divided
into 63 x 63 subsquares of 0.0604 x 0.004 m2. The result of the reconstruction, usiug this

coarser grid, is consistent with the previous resuli.

After this recoastruction, the mystery was revealed to thos= running the reconstimcticn
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[N

algorithm: the object is a 10 A long (30 <m), 4 A (12 ¢m) wide and C.106 A (.32 cn)
thick aluminam plate. Obviously, the cross-sectional dimensions of the mystery object

that are obteiaed from the reconstruction resulis are very close to the real ones.

In order to show the »qu'a.lity of the measuremeunts, we have compuied the far-field
data of the infinitely long and infinitely thin strip using the eigenfunction expansions
described by Asvestas ard Kleinman [6]. In Fig. 6 we compare the computed results of
the strip with the measured results of the plate for one incidence direction {¢' = 10°).
Notice that the measured scattering from about 5° off back scatier (¢* = 13°) to about
@" = 190° is noisier than the remainder of the curve. The noisy sector corresponds to
the measurements made in March 1990. In addition notice thet the measured curve near
@* = ¢' = 10°, is 8at and does not match the exact curve. This is the back-scattering

region that coutains the extrapolated data.

V. CONCLUSIONS

This paper presents definitive eviderce of the effectiveness of the modified gradient
inverse scaitering algorithm in reconstructing the shape of a perfectly conducting cylin-
drical chiect of arbitrary cross section from scattered field data. In eaclier papers it was
shown that tbe algorithm vras effective in reconstructing the conirast of penctrable ob-
jects, the boundary of impenetrable circular cylinders, and was stable with respect to
white noisz. All previous tests were performed with synthetic, i.e. computer sirmulated,
scattering experiments and thus were not free from the possibility that they were tainted
by an "inverse crime” of somehow using knowledge of the scatterer to faverably influence
the recoustruction. The present results show conclusively that the algorithm will yield

a successful reconstruction when the data are obtained experimentally and the shape of

the object was not known before the reconstruction was completed, thus removing auy
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question that an "inverse crime”, however icadvertent, was committed. These results
descrike only one scattering experiment and additional experiments a.e needed, not only
to recoufirin the present results, but also to test the effeciiveness of the reconstruction

algorithm for pepetrable scatierers.

Acknowledgments. This work was supported uader AFOSR Grant-91-0277 and NATO
Grant-0230,'88.
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CAPTIONS OF FIGURES

Fig. 1. Schematic diagram of the automated swept-angle bistatic measurement systern.
Fig. 2. The reconstructed iinaginary values of the contrast from synthetic data.

My 2a. Comparison between the recoustructed boundacy and the exact one (synthetic

data, n = 32).
Fig. 3. The reconstructed imaginary values of the contrast from experimental data.

Fig. 7. Comparison between the reconstructed boundary and the exact one (experimental

data, n = 32).

Fig. 4. The reccastructed imaginary values of the contrast of the mystery object (dimen-

sion of Lest doiain = 0.126 x 0.126 m?).

Fix 4a. " e reconstructed boundary of the mystery object (n = 32, dimension of test

domain == (.126 x 0.12¢ m?.

t'ig. . T..e rsconstructed imaginary valves of the contrast oi the mystery object (dimen-

sion of test domain = £.252 x 0.257 /n?).

Fig 3z The recomstructed boundary of the mystery object (n = 64, dimeusion of test

domain = 0,252 x (.252 m*).

Fig. 6. Bistatic scattering irom the 43 strip illuminated 10° off grazing.
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Abstract

The present paper contains the low frequency expausions of solutions of a large
class of exterior boundary value problems involving second order elliptic equations
in two dimensions. The differential equations must ccincide with the Helmholtz
equation in a neighborhood of infinity, however they may depart radi;cally from
the Helmholtz equaiion in any bounded region provided they retain ellipticity. Ia
some cases the asymptotic expansion has the form of a power series with respect
to k% and k*(lnk + a)~! where k is the wave number and a is a constant. In
other cases it has the form of a power series with respect to k2, coeficients of
which depend polynomially on lnk. The procedure for determining the full low
frequency expansion of solutions of the exterior Dirichlet and Neumann problems

for the Helimholtz equation is included as a special case of the results presented

here.




Introduction and Formulation of the Main Results

Let  be an unbounded doruain in JB* with compact infinitely smooth boundary

I, lec

A= i 9 i) ‘}3‘&-(:)-3‘?-- +o(2)
“ijux Bzi 0t 9z ; r—i;_; " By

be an elliptic operator of the second order (that is the matrix (a;;{x)) is non-
singular) with infinitely smooth coefficients in  and a;;(z) real valued and let A

coincide with the Laplace operator A in some neighborhood of infinity. Dencte by

u, a solution of the problem

Avs4ku=f, ze

: (1}
\B'u'zgo xEI

/

where B is either the identity (Dirichlet boundary condition) or the following op-
erator

Bu = %‘3 + p(z)%;li‘- + g(z)u. (2)

2

Here 5‘7; = 3 a;j(m)ngg% is the derivative along the concrmai vector (n = (n1,n2)
=1

is the unil vector which is normal to I and directed inte 2), 361' 1s the derivative

slong T', p,g € C*. Finally denote by

Riu: La(Q) — H*(Q), Imk>0
the operator which takes functions f € L3(§Z) into solutions of problem (1) belonging
0 the Sobolev space H2(Q).

With @ an arbitrary constant we define a cutoff function y = x(z) € C®(Q),

such that x = 1 when |z| < a and x = 0 when |z| > a + 1. Then a restricted

2



resolvent is defined as

Ry := xRix : L(2) — H*().

The operators Rk, Ry are defined and are meromorphic functions of & when Imk >
0. Moreover the operator Ki,Imk > 0, has a meromorphic continuation on the
Riemann surface of the function Ink (see [15]). Let us stress that Rif = xRy f if

f =0 for |z] > a. In this case the function u = Ry f is a solution of (1) for |z] < a.

The present work is devoted to the study of the asymptotic behavior of the
operator R (that is of the solution u = Bif, |z| < a of the problem (1) with f =0
for |z| > a) as k — 0. We consider only the two-dimensional case, since in other
dimensions the asymptotic behavior of the solution of this problem is much simpler.
For example, if the dimension is odd the solution is meromorphicin k in the entire k
plane [see 13|. The two-dimensional problem was studied in (1] - [18]. In particular
the latest results were obtained in [16]. There the problem was supposed to be
formally self-adjoint (i.e. (Au,v) = (u, Av) for functions u,v € C§(R) satisfying

specified boundary conditions) and nonpositive, or to be more exact it was supposed
that

(Au,u) £ ~a/|Vu]2dx, a>0 forallu e C5o() with Bu|p =0. (3)
)

Here (-, ) denotes the inner product in L;(Q2). For this case [16] gives the asymptotic

behavior of the solution u = u of the problem (1) with accuracy O(k?).

However more than ten years ago, in [15], there appeared results of one of

the present authors concerning the low-frequency asymptotic behavior of solutions

3



of general elliptic problems of any order polynomially depending on the spectral
parameter. Those results apply to problem (1) and allow one to obtain the full

asymptotic expansion of the operator Ry as |k| — 0. This exparsion has the form

o mi

> -2 k2 m ”

Re=k™? Eo E [m] In® k Pm.n, |k << 1 (4)
m=() nm(

where a is an integer, £ is a non-negative integer, P is a polynomial with constant

coefficients, and P, : L2(2) = H?(2) are bounded operators independent of .

This expansion is meaningful in the sease of the cperator norm. that is

A N omd kz
1Ref ~ 572 )" 5 '13(—1-2'5]"' In® kPm.nflli2cay €

< ek~ 2N 2100 ki £l 12 cq)

where .V is arbitrary, s = {(.NV + 1) and ¢ is independent of k.

The integers a and € and the polynomial P are not known in general, even for
equations of 2nd order. It is the purpose of the present work to specify the precise

form of expansion (4) for solutions of two restricted cases of problem (1).

Case 1. The space of bo'inded solutions of the homogeneous problem

Au=0,z€Q Bu=0.z€T (5)

cousisis of only the tnivial solution.

Case II. The srace of bounded solutions of (5) is one dimensiopal and if u is a
sontrivial solution then

im u(z) # 0. (®
P ene O0) .

4




and the formal adjoint to problem (5) (see (16) below) also bas a bounded solution

with property (6).

The exterior Dirichlet problem for the Helmholtz equation is an example of Case
I while the exterior Neumann problem for the Helmholtz equation is an exarmple of

Case II.

It is well known that if = is a bounded solution of Laplace’s equation in a

neighborhood of oc then for r sufficiently large. u has the form

u(z) = Cy + Z(a. cos ny + by sinnp)r~" ("

nm=0

In particular this representation is valid for bounded solutions of problem (5) and
of problem (1) with x = 0 if f = 0 in a neighborhood of infinity. Therefore,

condition(6) is equivalens to the requirement that Co # 0 for such solutions.

The conditions embodied in Cases I and II are less restrictive than those used
in [16]. If condition (3) required in [16] is fulfilled then together with (7) it follows
that there are only constant solutions of problem (5). This means that either Case
I or Case 1l apply. In our work we do not require nonpositivity, condition (3), nor
do we require that the problem be self adjoint. Moreover we obtain not only the

irst few tesms as in [16), but the complete asymptotic expansion of the solutions.

Calike [16] we consider (for simplicity ) only the problems in which the boundary

and coefficients of the equation are infinitely smooth.

The main results are contained in two theorems which are presented in this

paper. Let a be an arbitrary fixed constant such that I' is contained in the circle

5




[zl <a—~1and f =0wken |z| > a. Let Qu = QN {z: |2] < a} and 4 = A when
|z] > a—1. Let Lz,4 be the space of functions wiich beiong to L2(2) and are equal

0 zero when |z| > a. In particular, f € L, ,.

In Case I we denote by ug, u;, u; the solutions of the problems

Auo‘fv IGQ (8)
Bug=0,z€l; |upg/ <oowasr—
Auy = 0, TEQN 9)
{Bui=0,z€l; |y —lorj<ooasr—oo
Aug =0, z el 10
Bu; =0, z £ T; luz+%a;z1+§blxg|<coa.sr-—too (10)

where a;,d; are the coefficients in the expansion (7) for ug. We will show that the
uniqueness of the solution of problem (8) leads to the solvability of this problem.
After we have established this, we can easily infer the unique solvability of problems
(9) and (10) by reducing them to problems of the form (8). This is accomplished by
writing the solutions u; and uj of problemas (2) and (10) in the form u; = ¢lor + w,
and ug = --4(a121 + b172)¥ + wy, where v = y(z) is a cutoff function which is
equal to one for || > @ and equal to zero in some neighborhood of I'. Then the
problem of finding w; is of the form (8). Moreover since the expausion (7) is valid

for wy, in particular the constant

Ao = rl_i_ngg(u; — lnr) (11)
is defined. Fiunally, we denote by 8 the constant which occurs ia the asymptotic
cxpansioh of Hé”(z), the Hankel function of the first kind and order zero:

o
HY(z) = ’-‘7-:-(1n. - B) + 0{z*lnz), z — 0.

6




With this notation established we now state the main results.

Theorem 1. In Case [ for the solution u = .ka of problem (1) with f € L 4, the

following asymptotic ezpansion is valid when —F < argk < -3-215, |k] — 0:

m me—n<l

N
u = Z Z Z E™nk(lnk — Ao — 8) Pum nplz) + dn (12)

0n=0 p=0
where Um np(2) are independent of k and

lanlmaay S C@)k* kN *2|Ifll L, a0 (13)

The leading terms of the asymplotic ezpansion have the form

U = uo(:z:) - Ei_—_ghul(x) + k?lﬂkﬂz(r) + 0(/:2) (14)

where ug, u1, uz are the solutions of prodlems (8) - (10) and Co = rli_ngo uo(2).

Remark: In fact the corresponding expansion for the operator R; converges in the
operator norm for 0 < |k| < |ko| for some |ko| > 0 and therefore the infinite series

for u(N = oo0) converges in H2(2,)-

In Case II let us denote by vg the solution of problem (5) such that

rl_i_.xec vo(z) =1. (15)

Let the problem
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be formally adjoint to (5), that is, the operator .4* can be obtained from A by
substitutiny &; for b; and &~ Y £ for c. If B = I then B* = I, if B has the form
(2) then B* has the same form with 5 instead of p and =3 — g+ 3" bi(z)n; instead
of ¢. If u,v € C*®(), and Bu = B*v =0 on " then

" — Ou _ 8%
/.4uvd:: = /uA'vd:r + / (:9-;0 - ué;)dS, R>a. (17
Qr IR r=R

We will show that the space of bounded solutions of problem (16) in Case II is also

one-dimensional and there exists a unique solution v, of problem (16) such that

’_li_ngov.(z) = 1. (18)

Let us denote by v, the solution of the inhkomogeneous problem (5) (that is the

solution of problem (1) with & = 0) such that

vy ~a(lar - f3) —~0as r — oo (19)

where a = a(f) is constant. We will show that in Case II such a solution exists, is

unique and

1 [,
a= / foadz (20)
Q

Theorem 2. In Case II for the solution u = Ry f of problem (1) with f € L3, the

following asympiotic expansion is valid when —F < argk < 3%, |k| —0:

2ma1

N
u = Z Z k*™n"k upm,n(z) + Gy (21)

mm=( n=0 .
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where Uy, , are independent of k and

lanllazay € Cla)lk*N 2N +3k|| fll 2. (22)

The leading terms of the asympiotic ezpansion have the form

u = alnkvo(z) + v1(z) + O(k*n®k), |k| —0 (23)

where a 18 defined in (20).
Ifvw=1lthenupmp=0forn>m+1.

Remarks.

(1) The remark following Theorem I also applies here.

(2) It is not difficult to write out the scquence of problems similar to (S) - (10),
from which we can find all the coeficients in the expansions (12) and (21).

(3) In the present work we have assumed that the data f is independent of k. In
many applications, of course, f will be a known fuaction of k. In such cases
when f may developed in a series in k the present analysis will still apply. The

result will be the product of the expansion of the inverse operator, Ry, with

the expansion of f.




I1. Proof of the Theorems

Let us denote by 7 a particular function which is infinitely smooth, equal to
zero for |z| < a—1 and equal to one for |z| > a— % We will assume that a product
of any function in by 7 or by a derivative of 7 is defined in IR? and is equal to
zero in IR*\Q (where n = 0). For any smooth u let us denote by ¢ the following

function

g(u) = g(u)(z) = ulAn +2(Vu, V), ze R (24)

It is obvious that the support of this function belongs to the annulusa — 1 < |z| £

a~ 4. We will denote by * the convolution in R.
We need the following three lemmas in order to prove Theorem 1.

Lemma 1. For the solution u = Rif of problem (1) and = € IR? there are the

following representations:
i .
mu = — 2 H' (kr) w g(u) i £ € La,amn. (25)

nu = — éHé”(kr) *[g(u)+nflif f € L2,a. (25"

Proof. Since 4 = A for |z| > a — 1 we have from (1) that (A + k?)u = f for

|z| > a = 1. Therefore

(A + i*nu = g(u) +nf, z € R?

where the right side has compact support and nf = 0if f € L3 4—1. Representaticns

(25), (25') follow directly. This establishes the lemma.

10




If we replace Hél)(kr) in (25) by its asymptotic expansion as [k|] — 0. for r

bounded we obtain the following:

Corollary. If f € Ly a—1 and |k| — 0 then

7% = [ (1nk + lar - 5) + O(ELak)  g(x) ()

and also

= [51;(1:11: +1lor— B) — .é]‘;??k%k + O(k3)] = g(x). (27)

Next we establish the solvability of problem (8) which zs discussed previously also
ensures the solvability of problems (9) and (10). Moreover we also provide the

leading term in the expansion, (4), of the solution of problem (1).

Lem:ma 2. In case I problem (8) is solvable and the following ezpansion is valid

for the solution u = Ry f of problem (1) with f € La,q

U= ug+ Co — ’aul(:z:) + O(k*In"k), £ € Qa, k=0 (28)

lnk - Ag

where ug, Uy, Ag,Ca, B are the same as in Theorem 1 and v is an integer.

Remark: The form (28) is based on the general expansion of the inverse operator

(4) and hence the order symbol is used in the sense that

Cou
s € TR s

flu = uo —

The order symbol for solutions is used in the same sense throughout.
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Proof. From (4) it follows that

_ ;2.Q(nk)
L(Ink)

+ O(F***n"k), z € Q,, k - 0 (29)
where s is an integer (not necessarily positive), L is a polynomial with constant co-
efficients and Qis a polynomial, not identically zero, whose coefficients are functions

of z.

It is convenient here to assume that f € Lyg-1 but not L2,a. Since g can be
chosen as large as we wish, this is not an additional restriction. Let us prove that
= 0. Taking the limit in equation (1) as k — 0 we can see that s cannot be
positive. Let us suppose that s < 0. Then by equating coeficients of k2* in both

sides of equation (1) it follows that the function w := 9- satisfies

Aw=0,2€Qy; Bu=0, z& . (30)

On the other hand putting (29) in both sides of the equality (26) and equating the

leading terms which contain the multiplier k2* we obtain

nw = 9—17;(lnk +lnr - 8) % g(w), z € Q, (31)

Since the right side of (31) depends on values of w only when z € 0, formula (31)
allows us to continue the function w to the whole domain Q. As a result we obtain

the function w in Q which satisfies (30) and

w = %r-(lnk +lar - 8) « g(w), z € Q. (32)




Since 7 =1 and g = 0 for r > a — ; we have from (32) that Aw = 0.for r > a — 3.
From this and (30) it follows that w is a solution of problem (5). On the other band
from (32) it follows that

w — c(k)(lnk + lnr - 8) = 0, asr — (33)

where

(k)= %/g(w)d.‘c. (34)
Q

Since w = % for z € Q, and w is defined by (32) for r > a there exists an integer

v and functior.s wy, wy of z such that wy 7 0 identically and
w = woln’k 4 wyln* "k + O(ln”~%k), k — 0 (85)
Obviously wp is a solution of problem (5) because w is a solution. On the other

hand putting (35) in both sides of (32) and equating the leading terms (of order

In**'k and In¥k) of the asymptotic expansions, we obtain

0= { g(wy)dz (36)

/
My = -(lar = 8) = g(wo) + 5= [ o(w1)ds (37
2 :

From here it follows that wg — constant as r — oo. Therefore wy is 2 bounded
solution of the problem (5) and it must be zero. This contradiction proves that

s = 0.

Having established that s = 0, the samce urgument can be repeated, with s = 0,

to show that w = %, z € 2, can be continued to all of  and (32) - (37) are fulfilled.
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However w is now a solution of an inhomogeneous problem (problem (1) with & = 0).
Since w has the form (35) and is a solution of problem (1) with k = 0 we may take
the limit as ¥ — 0. This process produces a contradiction if v < 0 (i.e. 0= f).
Hence v > 0. If v > 0 we multipy beth sides of the equations by In™"% and again
take the limit as ¥ — 0. We find that wq is a solution of the homogeneous problem
(1) with £ = 0. Ia addition we may conclude that wy is bounded using the same
arguments used previously (c¢.f. (36) and (37)). Therefore wy must be equal to zero.
This shows that ¥ = 0 and wp is a bounded sclution of problem (1) with k£ = 0.
This means that wp = ug and therefore the existence of the solution u¢ of problem

(8) is proved, hence, as noted previously, the solution u; of problem (9) also exists.

Now recall that we have the expansion (29) with s = 0 in which the function
w = £ is a solutica of problem (1) with & = 0 and satisfies (33) and (34). Then the
function w — ¢(k)uy is a solution of (1) with ¥ = 0 which tends to ¢(k)(lnk — Ay — 3)
as r — oo. It means that w — c(k)ul = ug and ¢(k)(lnk — A ~ 3) = Cy which can
be solved for (k).

Thus we have shown that

u =w+ O(k%In7k) = up + ¢(k)u; + O(k%1a7k).

With the formula for c(k), (28) is established and Lemma 2 is therefore proved.

Remark. Since wo = uy it follows from (36) that

/ g(uo)dz = 0 (38).

Q

Lemma 2 gives the two leading terms of the asymptotic form of the solution

of problem (1) in Case I. It is possible to obtain higher order terms in the same
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way. In particular one can show that + in (28) is equal to one. Howe;vcr this result
is a direct consequence of the complete expansion (12) in Theorem I which will be
proven below. In order to specify the first three terms of (12) the geperal theorem
yields a result of the form (14). To complete the proof that the coefficients in (14)

are solutions of (8) - (10), we will need the following.

Lemma 3. In Case I if the constant v in (2R) is equal to one then the asymptotic

ezpansion {14) is valid
Proof. If v = 1 then from (4) and Lemma 2 it follows that

u =ug + uy(2) + k2lnkuy(z) + k2us(z) + O(k*ln™1k),

L
ok — o —F
z €8, |kl —=0 (39)

where ug and u; are the solutions of problems {8) and (9) and uz(z) and uz(z) are
functions independent of k. It remains to show that u; is the solution of problem

(10).

Let us substitute (39) into (1) and equate terms of order k%Ink to zero since

there are no such terms on the right hand side. We then have

Aug =0, z€ Q;
Buz =0, zeTl.

Further as in the proof of Lemma 2, we can assume that f € Ly 4. Now substitute
(39) in (27) and equate the terms of equal order. In particular there is only one

term of order k2ln’k and its coefficient must therefore vanish. Hence

0= [ guais | (40)
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Equating the terms with k%Ink we obtain

9]

nug = Qiﬂ(lm‘ —~B) % g(uz) — gl-m:rz *«g(uo) + 5 /g(us)dz, (41)

R
As was done in the proof of Lemma 2, we can use (41) in order to continue the
function u, on the entire domain §2. The extended function u; will be a solution of
problem (5) and, will satisfy (41) for all z € . This is proved exactly as was done
in the proof of Lemma 2. To complete the proof of Lemma 3 it remains to show

that up has the same asymptotic behavior when r — o0 as in (10).

Since it follows from (40) that the first term of the right side in (41) decays as

r — o0 it is enough to check that

1 .
I-‘i;rz *g(‘Uo) -ayz; — b;l‘gl < C, T — O0.

We have,

r? x g(uo) = / |z = y2g(uo)dy = r? / g(uo)dy+
R? R?

—221/y19(u0)dy-2332]yzg(u())dy'i'/lylzg(uo)dy- (42)

R? R? R?

According to (38) the first term in the right side of (42) is zero. Since the last term

is constant it remains to sbow that

1 1
~5 / z;9(ug)dz = ay, ~5 J/ z9g(ug)dz = b;. ~(43)
R R?

Since f € L24~1 and A = A for r > a — 1 it follows from (8) that Auy = 0 for

r > a — 1. Therefore (see (24))

9(ug) = A(nu)

16




Further, according to (7), we have

cos sin

ug=GCo+aq + b

+0(r~?), r = o0 (44)

where tan ¢ = L. Hence for R > a we have, with Green’s theurem,

inr
/ z19(ug)dz = / 71A(nug)dz = /(R2 cosé%‘—‘r-o-lr.n — R cos dUg|rmr )dd
r<R r<i 0

Taking the limit as R — oo and also taking (44) into account we obtain the first

equality in (43). The sacond one :an be established in the same way. Thus, Lemma

3 is proved.
Now we may proceed to the proof of Theorem I.

Proof of Theorem 1. Let { € C®(Q), { = lforr > a-1, ( =0in a
neighborhood of . Let us denote by U the operator which maps the righthand side

into the first two terms of the solution of problem (1),

Co
M — 2 — o ——————
U Laa(@) = Hool@), Uf = o+ =g (45)

where ug and u; are the solutions of problems (8) and (9). Further let us denote

by @i the following operator (parametrix of problem (1)):
i : Lye — HE(Q) (46)

ik = (UR)(1 - 1) - %[Hé”(kr) «(g(UR) + )], h € Loa (47)

Let us pfove that for any & € L2 4 function ®ih satisfies the following relations:

{(A+k2)<§kh=h+Tkhs z€Q (48)

Bdih =0, zel

17



where T} A € Lia and

(1 Tehlle,, S CRP™ KA, . (49)

Multiplying both sides of (25') by ¢ and taking into account that {n = 7 we have

1Rk = =S{ED(kr) « (o(Reh) + 7h)

Hence the following identity is valid

Buh = (Ruh)(1 - n) = D) s (gQRR) +0)] - (80)

This allows us to estumate the difference ;A — Rih. Using Lemma 2 and (24) it

follows that

I(Reh — UK a2, S CIE°7k1A] L,.,  1k] =0 (51)

and

lg(Rih) = g(Uh)l|zaa S ClaInTk|llAl|z,,, K] —0 (52)

Moreover it is obvious, that for any f € L3.a

|- LE(kr) « fllwscan) < Clok s 1l =0 (53

Subtracting (50) from (47) and estimating the right side of the result with the help
of (81) - (53) we obtain

|8xh — Behllgean) < CIF™ kAL, K= 0

18
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and therefore

(A + k)@ch = hllLyq,, < C? 1 k{||A)|L,.,, K[ —0 (54)

Further for r > @ ~ } the following relations hold

n=_(=1 A=04,9g=0.

From these relations and (47) it follows that (A+4%)®h = hfor r > a—3. Together
with (54) it follows that Tyk € L3 . and the estimate (49) is valid. Finally, since
n = ¢ = 0 in a neighborhood of T" it follows from the boundary conditions of
problems (8) and (9) that the function (47) satisfies the boundary condition {48).
Thus the relations (48) and (49) are established.

Now we look for the solution u = R, f of problem (1) with Im/% > 0 in the form
u = @;h with an unknown function A € Lz 4. It is obvious from its éonstruction.
(47), that $h € H?*(Q) if Imk > 0. Hence, Rif = &4k if the function &4 satisfies
the differential equation and the boundary condition of problem (1). According to
(48) both will be satisfied if & + T4k = f. Therefore

Ref =®u(I+T)f, Imk>0

and hence

Rif = x@:d +Tu)"*f, fé€ L (55)

where y is the cutoff function introduced in the definition of Ri. Let us recall that
according to its definition, the operator U has the following form

Co

U=Uo+mU1 . (56)
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where the operators U : f = u, Uy f = uy transform the function f into the

solutions uo and u; of problems (8) and

(9) and the operators U, and U; do not

depend on k. Further {rom the asymptotic expansion of the Hankel function as

|k| = 0. which in fact is convergent, it follows that for f € L, , and |k| sufficiently
small

CLHGV (kr) » f] = [i k% 4; +mkik2f3j]_f (57)

=0 =0

where AJ'.,BJ' : Lg.n — H‘z“.(ﬂa

) are bounded operators. From (86), (57) and (24) it
follows that the operator &, (46) and (47)

» has the following convergent asymptotic

expansion for |k| sufficiently small

00 oo o0
= 25 (1) . .25 &,2) 1 - 2j5(3)
@i ,-:Zok ! +1n;.§k ! +mk_/\°_ﬂj_0k & (58)

where &7 : Lz, — H} _(£2) are bounded operators, s = 1, 2, 3. In (58) there is no

term with coefficient ®{% because

805 = - [ g(uorda
Q

and this function is equal to zero due to (38).

Since

Ti =(A+ kz)q’k —I:Ly, — L2,

with (58) and (49) it follows that, for |k| sufficiently small
o0

. SN 1 =
Te =3 RYTH 4+ 1k 3 k973 4 Iy DILk (59)
j=1 J=1

J=1
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where T} : Ly g — L2,s are bounded operators and s = 1, 2, 3. From (59) we have

= R 1
-1 _ -7y = . 2my . n 1,
(I <+ Tk) - Z( TL) Z Z k m k(lnk - )\0 _ ﬂ)me.n.}’
120 mx0 n+p==0
The representation of the solution, (12), the estimate of the remainder, (13), and
the remark about convergence of the series are all obvious consequences of this last
formula, (55), and (58). The expansion (14) follows from (12), (13) and Lemma 3.

Theorem 1 is therefore proved.

Now we pass on to the proof of Theorem 2. First we establish two additional

lexamas.
Lemma 4. In Case II the following three assertions are valid:
1) The space of bounded solutions of problem (16) is one¢-dimensional.

2) There ezists a unigue solution ve of problem (16) for which condition (18) i
fulfilled,

3) Problem (1) with k =0 and f € Ly, has at most one solution vy with asymp-
totic behavior (19) at infinity, and if it exists then the constant a in (19) has

the Jorm (20).

Proof. Obviously we can assume that the origin of coordinates belongs to the
domain ZP\{} and there exists 7o > 0 such that the circle of radius ry belongs
entirely to this domain. Let 0, " be the images of 2, T and A, A", B and B"* be the

a
images of 4, 4", B, and B* under the mapping r — ry = 2. Let

r{'z./iu=0,z€fl;.§u=0,zef; (60)
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rr?Au =0,z Bu=0, el ' (61)

‘be the problems obtained from (5) and (16) respectively as a result of this mapping
and multiplication of the equations by r;*. The presence of the factor r;? allows
us to prove that problems (€0) and (61) are adjoint. The proof follows. Siace the

Jacobian of the mapping is equal to r'? it follows from (17) that

/ (Aw)or 3ds = / ECHE YN (62)
@ o)

for any u,v € C°°(-S;2-) such that u = v = 0 in some neighborhood of the origin and
Bu=DB*v=0onT. Since A = 4* = A in a neighborhood of infinity we have that
r7?4 = r7%4* = A in a neighborhood of the origin and the following two assertions
are valid: 1) problems (60), (61) are elliptic problems with smooth coeficients, 2)
equality (62) is valid without the assumption that ¥ = v = 0 in a neighborhood of

the origin, that is, problems (60) and (61) are adjoint.

Since the coefficients a;; of the operator A are real, problem (60) is homotopi-
cally equivalent to the Dirichlet problem (if B is the identity operator) or Newmann
problem (if B has form (2)) for the Laplace operator. Therefore the index of prob-
lem (60) is zero and the dimensions of the spaces of smooth solutions of problems
(60) and (61) are the same. Since the original operator A and its adjoint coincide
with the Lanlacian in s aeighborhood of infinity, inversion establishes the one-to-
one correspondence of the space of bounded solutions of the exterior problems (5)
and (16) with smooth solutions of the interior probleimns (60) and (61) respectively.
Therefore the dimension of the space of bounded solutions (5) and (16) is the same.

Thus, the space of the bounded solutions of problem (16) is one-dimensional (as it
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is for problem (5)). The first assertion of the Lemma is therefore proved.

Since we suppose that problem (16) has a solution with property (6) (the second
assumption for case II) the second assertion of Lemnma 4 follows from the first one
and formula (7). Finally we prove the last assertion of Lemma 4. From formula
(17) for functions v; and v,, we have

. Svy _ 9%,
Q/ fv.dz = / (—a-r—v. - U1 —6'7> dS, R>a (63)
R

re it

Since Av; = Av. = 0 for r > a — 1 the expansion (7) is valid for the functions
v; — a(lnr ~ 3) and v.. Note that according to (19) the constant Cy vanishes in
the expansion (7) of the first of these functions. These facts lead to (20) if we
take the limit in (63) as R — oo. The uniqueness of the solution v; is an obvious

consequence of (20), (19) and (6). This completes the proof of Lemma 4.

Lemma 5. In case Il problem (1) with k = 0 and f € Lz 4 has 4 solution vy, with
saympiotic behavior (19) at infinity (which i3 unique according to Lemma ). The
following ezpansion as k — 0 i3 valid for the solution u = I?ka of problem (1) with
f € Laa.

u = (alnk)vy + vy + O(k*InVk), z € Q,4, k — 0 (64)

where a is given by (20) and v i3 a consiant.

Proof. From (4) it follows that

o = 20 Q1K)

2042y, ¥ —_
T + O k), z € Qu, k — 0, (65)

where @ and L have the same form as in formula (29) and v is some constant. As

was done in the proof of Lemumec 2 we deduce first that § < 0 and if s < 0 then the
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function w = %, T € Qq4, can be continued on the whole domain i such a way
that w is a solution of (5) and satisfes (33). Hence the difference w — c(k)lnkvy is
a solution of (5) and satisfies (19) with a = ¢(k). From the uniqueness of v; which
was proved in Lemma 4 it follows that w — c(k)lakvo =0and a = ¢(k) = 0. Hence
w = (. Therefore, s = 0. Now we can repeat all the arguments concerning w and
we obtain the expansion (65) with s = 0 in which the function w is a solution of the
inhomogencous problem (1) with & = 0 and (33) is fulfilled. This means that the
function w — ¢(k)lnkv is a solution of problem (1) with # = 0 which satisfies (19)
with a = ¢(k). We simultaneously obtain the existence of v; and the expansion

(64). Lemma 5 is thus proved.
Finally we are in a position to prove Theorem 2.

Proof of the Theorem 2. Ia order to prove the theorem we have to repeat
almost word for word the proof of Theorem 1 replacing Lemma 3 by Lemma 5 and

the operator U by the following operator

ViLa(Q) = H (Q), Vf= alnkvy + v,

where vg satisfies (5) and (18), v satisfies (1) with k = 0 and (19) and a is given
by (20). Instead of (56) we have to use the formula V = alnkVy + V;, where
Vof = vo, Vif = v;. Therefore in place of (58) we obtain, for |k| sufficiently small

oo oo oo
®u=3 kM £1ak > k40P +10% T ke, - (66)

Jm=0 Jjm=0 Jm=1
In place of (59) we have

s 00 e
Te=3_W¥T}V +1nk S~ k4T 4122 3 k3T, (67)

=1 =l =1
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and
o 2m

(14T =Y > k*™a"kTm,n (68)

max(0 n=(

Expansions (21) and (22) follow from (55), (67) and (68). Formula (23) is a conse-
quence of (22) and Lemma 8.

In order to specify the leading terms, (21) for the case vo = 1 we must slightly
change the operator ®x. We add the term (k?la’k)Q to the operator &, (47),

where

of = 2= )[r . glo)ly w0 = 1.

and « has form (20). It follows from (24) that g(vo) = Anp = A(n — 1), where
n—1¢€C§°. Hence

Qf'—‘___a«g;l)["’*ﬁ(fl—l)] a(c 2 =D iartu(y - 1)) = const - (¢ = 1)

Hence the function Qf is constant in a neighborhood of I'. Since Qf is a multiple
of vy in a neighborhood of the boundary and vg satisfies the boundary condition
of problem (1), Qf also satisfies this condition. Therefore the addition of the term
k21n’kQ to ¥ does not change of the steps of the proof of the theorem, but it
does change the coetficients in the expausions (66) and (67). In particular it is not
difficult to check that the operator T which defined the leading term ir (67) and

had the form

TEf = A{=galr® « g(oo)]}

now has the form

Tl(a)f = —%A[r"' « g(vg)), vo = 1.
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But it was shown that the convolution in the last formula is constant. Hence the

operator Tfa) is equal to zero and instead of (68) we have

(T+Ty)t = f i K™ 0" kT .

m=0 n=0

This leads to the desired form of the expansion (21). Theorem 2 is therefore proved.
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Low-frequency image theory for the dielectric sphere
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Abstract~Kelvin's well-known and Neumann's lesser known image theories for the sphere,
valid for static sources outside the sphere, are extended to low-frequency current sources
involving a nondispersive dielectric, by expressing known field integrals as arising from
suitzble image currents. The image of a radial current element is seen to consist of a radial
line current between the ceater of the sphere and the Kelvin point plus a dipole at the
Kelvin point. The image of a transverse current element is a combination of a transverse
current strip plus . radial bifilar line current between the center and the Kelvin point.
These image currenis can be interpreted as image charges of the corresponding static
problem in harmonic motion. The theory is tested by knowu limiting cases.

1. INTRODUCTION

The well-known image theory of electrostatic charges outside a perfectly conduct-
ing sphere was originally introduced by Williama Thomson (later Lord Kelvin) in
one of his first studies as a young scientist in 1845 [1]. Kelvin's image theory
has since then been applied to problems of elecirostatics, magnetostatics, and
DC current problems involving perfectly electrically or magnetically conducting
bodies with most recent contributions published in the present decade [2,3].

Extension of Kelvin’s theory to material spheres did not seem to have had a
successful solution before a paper [4] of 1992 by one of the present authors for the
dielectric sphere in electrostatics. However, it was recently found that a sirilar
solution was given already in 1883 by Carl Neuraann in an appeadix of a book
on hydrodynamics [10]. Obwiously, the solution has been dormant for more than
a century and mcst probably was never elaborated beyond its introduction on a
couple of pages. The solution will be referred to as ‘the Neumann image’ from
now on. After its rediscovery, the theory has been extended to magnetostatics [5),
layered dielectric spheres [6], anu two separate spheres [7]. Also, chiral and bi-
isotropic spheres have been solved [8] in terms of image theory as well as sources
inside the sphere [9].
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In the electrostatic image theory of dielectric sphere the image of a point charge
was seen to consist of a point charge plus a line charge with a simple analytic
power-law expression, readily accessible to small-scale computation [4]. In terms
of this theory, many problems involving spheres can be formulated in a simple
manner with line image sources taking the place of Huygens’ surface sources or
volume polarizaiion sources in integral equations.

In the present paper, an attempt is made to extend this static theory to low-
frequency problems involving a dielectric sphere. It is seen that, for a current
dipole outside the sphere, an image current source can be found in the form of
a line current and a bifilar line current. It is assumed that such a theory can
be utilized for time-harmonic problems where the basic static approximation is
not gocd enough, i.e., when the radius of the sphere cannot be considered to be
very small in terms of the wavelength. Further extension to spheres with lossy
dielectric and/or magnetic permeability seems well within reach with the method
given in this paper.

2. THEORY

We consider the electromagnetic problem of an infinitesimal time-harmonic cur-
rent dipole outside a dielectric sphere centered at the origin, Fig. 1. The radius
of the sphere is a and its permittivity e¢r¢o, and the permittivity of the space
outside the sphere is assumed to be ¢, without loss of generality. The perme-
ability both inside and outside the sphere is assumed to be uo. For simplicity,
the sphere material is 2: swned to be dispersionless. The current dipole lies at the
point I’ with [¢/| > @ and it is represented by the current function

I(x) =W Ls(r-r'), 1)

where the unit vector u gives the direction of the dipole and IL its moment.
Another way to describe the dipole is in terms of the dipole moment vector p,

I(r) = jwps(r ~ '), (2)

whose relation to the current function is p = WL /jw.
The electric charge at the ends of the dipole is represented by the charge density
function

oxr) = —_——-— = —j—w—u »Vé(r=r')= ~p.-Vé(r - 1) (8)

At some stage we define the dipole to be on the cartesian coordinate z ads to be
able to compare with previous results. The objective is to find the image source
which replaces the dielectric sphere in giving the reflected field in Jow-frequency
approximation.
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Figure 1. Geometry of the problem. The dielectric sphere of radius a
and permittivity € = éprés is smell in terms of the free-space
wavelength. The current dipole is outside the sphere at the

point denoted by the vector r'.

2.1 Stevenson Analysis

Let us apply the Stevenson method [12] and expand all quantities in Taylor
series of w. Assuming ¢ independent of frequency, from the Maxwell equations

V x B =~ jwpH, (4)
V x H =jweE + 7, (5)
V.D=V.(E) =g, (6)
V-B=u,V-H=0, )

we can see that the equautions are satisfied if E, D, and p are assumed to be
even, and H, B, and J odd, functions of the frequency w. We define the order
of different terms by the power of w or, what is equivalent, of ko = w,/figé; , and
denote the order by the corresponding subindex. Let us assume that the current
is of first order, J = Jy, i.e., 2 lincar function of w. From (3) we see that the
charge inust then be of zeroth order, o = gp .
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Thus, in the static limit w — 0, the charges are frozen and the current is zero.
The resulting electrostatic equations are

V x Eg =0, (8)

V- (¢Eo) =¢0 (9)

plus regularity conditions at infinity. The problem of the sphere was solved in
terms of electrostatic images in (4]

The first correction for the electrostatic fie)d arises from the first-crder magnetic
field H;, whose sources are the first-order current J; and the zeroth-order electric

feld satisfying

V x Hy =jweEg + 21, (10)
Vv . H; =0. (1
The next set of equations reads

V x Eg = — jwpoH1, (12)
V- (eBg) =0, (13)

and so on. The problem considered here is to extend the zeroth-order electrostatic
image theory for the first-order magnetic field by finding the first-order image
currents.

2.2 Zeroth-Order Problem

The zevoth-order electric Seld can be written in terms of a scalar potential:

Ey = -V¢y, (14)
which satisfies the Poisson equation (9)

V (Vo) = —p0- (15)
This equation can also be written as
v.P
V2 = -2 -—--0, 16
b=t (16)

where P denotes the secondary source, the polarization moment density of the
dielectric sphere:

Py = (& ~ 1)esEy. an

In (16), the primary and secondary sources can be defined to give rise to the
incident and scattered potentials, ¢9 = #§’° + ¢, in the region outside the
sphere, satisfying
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Vi = - B 18
0 . (18)
v2gp =20 (19)

It was seen in [4] that the latter source can be replaced by a simpler image
source ¢;p whose expression depends on the original source, The corresponding
potential satisfies

2
V?¢;_‘D - _to’ . (20)

The image source is chosen so that the difference ¢{r) — ¢;0(r) vanishes outside
the sphere, i.c., =V Py — gjp is a non-radiating source.
2.3 First-Order Problem

Because of (11), the first-order magnetic field can be derived from a vector
potential Ap:

Hy = —V x Ay, 1)
#o

whose equation can be written from (10) as

Vx(VxAp)=-V3A1 + V(Y- A1) = pol) + jwpoPy = V(jwetodp). (22)
We are free to choose one scalar condition for A;. For the Lorenz condition

v. Al = —jwpo€o¢0 (23)

(22) is simplified. Splitting the vector potential into incident and reflected parts
A1 = A" + A] we can write

V2Axinc = “011’ (24)
V2AL = = juwp,Py. (25)

Thus, the first-order reflected magnetic field is due to the equivalent volume cur-
rent jwPq within the sphere, and it is known if the zeroth-order problem has been
solved. However, we wish to simplify the volume source by replacing it through a
simpler image source J;;.

To find the image sources g;5 and J;1, we write the low-frequency approximation
of a known expression for the exact reflected electric field due to the dipole sourve
3(r) = jwppd(r = ') and try to identify its sources.
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4.1 Green Dyadic

The wxact expressicu for the reflected electric field can be found, e.g., from the
monozriph by Jones [13], and it can be writtea with some chauge in notation as

E(r) = --quoﬁ (r,r') Ty (2') w2 3:'(: ') vy (28)
The exact reflection Given dyadic ia

G (& AYe E .
g"(l“ r’) =~4~;r]')'c- (k:nr + V"g;) (kgn:. -+ ‘7‘.5;'.) ['.,.IVc (X‘, r')l

J "°(z X V) x V')Vi(e, ¥, @1

where r is the field point cnd ¢, the source poiat.

‘The potential function Vr for 7 = ¢ und 7 = 5 can be expressed 25 series
iavclving spherical Hanksl finctions und Legenre polynomials. Low-brequency
approximation up to the first order in k, caw be written, when kyr and |/eckor
are emall, in a simple form sbtainable from the exact axpressions given hw Jones
[13]. After some algebra,

o~ J y=1 a2\
Ve(t.x') = 4...« s rr a1 (';r-,-) Pn(cos ), (28)
with
5
cos ) = :;;-_,- (29)

Note that the angie v Joes not rdepend on the distances r aud /. Thus, we can
wiite

o e x n(e, - * ab n+l
prwyw (re ¥y = E kJa n(e,(- - 1)3‘ : ——) Pn(cos 7). (30)

2.2 Zureih-Order Imags

Assuming pe = 1 for the dielectric sphere, we have V, = 0 and che zeroth-
order prohleza comes froms. the bawa: verny awd its solution soould coincide with
tiat derived earlier in [4). Frown (27) aad (28) we san approximate the Green
dyadic by its locrest-order team, which turns ovt 6 have the ovder ~2:

E"(r’_ ) e -2(l'al‘ )= "':b_ VV"‘"‘~ (rr'Ve)

oo

! 1 n(‘r ~1) (a2 >n+1
) EVV E 4ra n(er 4+ 1)+ 1 \rr Falcos7).  (31)
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At this point, assuming r' > a, we write in analogy to [4]

nier - 1) a? n+l / Mg INm il
et i\7) =¢f S e (32)
r .
0

where the image function f(r',r") is defined as

| | d [er=1a (rien\@T a2
' £ty = == [:ﬁ—l% (%) U(%‘"")}' (33)

and U(z) denotes the Heaviside unit step function. Equation (32) can be easily
verified by direct substitution of (33).
Inserting (32) in (31) gives us the representation

Boant) = o VY / fe i S L Poeosy)ar’.  (34)

n=(

Defining the vector r” to be in the same direction as r':
r roa”

" n
r'=-—r" = Cosy=—
v 1=

(35)
and the distance function L) as

D(r=x")= Ir =)t = F) = | /r2 + ()2 = 2rrlicosy,  (36)
we can write from the definition of the Legendre polynomial for r > r”,

Ilﬂ

B = 2 S Pl o7

which inserted in the Green dyadic expression (34) gives us

Gro(r¥') = —-k}g VV,/T%I—:—Z’ﬁd " (38)

Note that it is not only f(r/,r”) which depends on ', but also the distance
function D(r —r''), because N ur”, where ul = r'/r is the unit vector of
both r and ¥’. In fact, wecamwnte

g1 ) r—wen  (Fowdd).
D(x—uwrty D3 D3 '
which is a vector orthogonal to r' and r”. Note that the order of differentiation
and integration can be interchanged because the field is always computed outside

(39)
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the mmge source, i.e., outside the sphere, whence the Green function always
remaing finite,
The zeroth-order reflected electric field can be written in the form

2
Eg(r) mljﬂ@'_g - po = ~Vej(x), (40)

20 VS, L [po- (- wl) xfG e
$o(r) = ,/ dregD(x - ') dr” +,/ dxeor' D (r ~ r’)) ar'. (41)

These expressions cau be compared with those of the scalax potential due to a
line charge pjp(r”) extending from the ceater to the surface of the sphere,

T N

aod due to a dipole line charge of momeant. density pio(r”),

" = 7
bp(x) = i:’%%g—:_—:-% dr', (43)

Comparing (41), (42), and (43), it is seen that the first integral of (41) curre-
sponds to a line charge image whereas the second integral is of the form of a line
dipole image whose distributed dipcle moment vecter is perpecdicular to the line.
Obviously, the former is generated by the radial component of the original dipole,
whereas the latter is due to the transverse component of pp. Let us consider the
two cases, pg parallel aad perpendicular to r/, i.e., radial and transverse dipoles.

Radial dipole

Wben py is parallel to r/, the second integral of (41) vanishes and the first
integral can be identified with (42} with the image line charge defined as

io(r) =pg * V' f(r',r) = py f; f(r',r)

B |erm1a frir\#_dd
=i |sne(E) v(E) W
-

By changing the spherical coordinate r,»' to cartesian moordinate z,z’ this

~ result can be compared with Eg. (23) of [4], obtaiued through another methed.
After making the two differentiations, the expressions can be seen to coincide, if
the different definition of the dipole moment is taken into account.
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Traunsverse dipole

For the transverse dipole satisfying pg - r’ = 0, we have pg - V' f(r', 7"} = 0,
waence only the sacond integral of (41) survives and, identifying it with (43), the
dipole line image function can be written as

o ar d e =1 (2" _‘_'J‘FY a? ]
Pan(r") = = pur S ) = B g [""ﬁ (&) "o (5- 3J
L

I |
- €p = 1 a\3 i ‘02 1 a r,’.ll Y (12 "
T e +1 (r') o0 ~7) & +1(7)2 ’aT) U\7~T
(45)
Again, after & chunge of radial and cartesian coordinates, the result can be seen
to coincide with Eq. (22) of [4).
3.3 First-Order lmage

The reflected magnetic field H" can be written in terms of the cuwrl of the
electric Seld as

V T

AL (46)
"‘J WHo

The first-order magnetic feld is written in terms of the second-order electric feld:
V x Ej

Hf = 47

1 ~J WFO (47)

Actually, kaowledge of E} is not needed, because V x Ef can be expressed in
terms of the curl of the zcroth-order Green dyadic as

;e [v xT') po=jw [V xE] -po.
1= ] P =jw |V x G| -pg (48)

‘The zevoth-order term of the curl of the reflection Green dyadic for a nonmag-
netic sphere with ur =1 can be written from (27), after some steps, as

[V X E’]o = - -éﬁ(r x V) V'a - (v'Ve), (49)

=1 AL
<’7‘1~'(r Vo) = E koa n(er + 1) +1 ( w) Fa(cos ). (50)

Proceeding as in the prcv:ous section, we can write

€ 1 u2 n+1 a

.-

m (';7‘) = a/g(rl,r")(r”)ndr”, (51)
0
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by defining

=11 (PN~ /42
g(rl,r" = -g-:—-.{-—i“; (-;-5-) U (7 - T'") . (52)
The g(r/,r") function bas a simple relation to the f(r',r") function defined in
(33):

f(r',r") = "gg'l':'lr,lg(r,'r',)]' 53)
‘The curl term has now the form
a
[V x Fo = - (r x V)V’/
0

o) 2
4w et

Py(cosy)dr"

a
. ’ g(r',r") "
=V x rV ‘0/4—“——#D(r-—r”)dr . (54)

Here, the swa in (50) bas Leen extended from n = 1 to n = 0 because r x
VPy(cosvy) =G.
Writing the first-order maguetic field as

Hj = jw[V x E"]o “pp= -E—V X Ay, (58)
(]
the vector potential can be defined as

rg(r',r')

1"
J @D (56)

A (r) = jwpopg * \A

Because
T " i'”

and since the gradient term vanishes in the curl expression of the msguetic field,
it can be omitted and we can further write

']
Y'g(r, )
=1 . vl 3 n
Aj(r) =jwpopg / 4xD(x - 1") dr

a a
; /(g ‘v’.’r’) W ! (PG'V’EL)’."."I' "
Swtte [ “gpp otk [ Sy ¢

[~}
[ ~3

. r’ 1
+ jwp, / LIPS V'B dr’. (88)
0
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This expression can be compared with that for the vector poténtia.l due to a line
current along the z axis, I(z"):

Ar) = #ob/ ED:—&%@"{Z"' (59)

and due to a bifilar line current defined by the current deasity function

I(") =1(-")L . V"§(p"). (60)

p is the transverse ( oy plane) position vector, L the infinitesimal distance vector
between two infinite currents, +I flowing along the z axis and —I paralle] to it
through the point p” = L. IL is the finite moment dyadic of the bifilar current,
The corresponding vector potential can be written as

a a
_ I’ "o_ ) (C20) YD N
A(')—Po‘[mw = —po [ ===V 5dz’. (61)

To find the image currents, let us again separate the two cases:

Radial dipole

In this case, the operator po-V' only operates on the function g(r/,r"), whence
the last two integrals in (58) vanish. Comparing with (59), the vector potential
can be expressed in terms of an image line current flowing along the r' direction:

: . d
Li(r") =jwpo - V'g(+',r"Yurr" = juwpy = [r"g(+',r")]

-
. d Cp = 1 r” r'r” T az "
=P [“—7— =) o (E-)

= - jwpo [5% (&)’ 50" - %2-)
_ 10N\ T
AT

It is seen that the image consists of a line current between the origin and Kelvin
point r = a?/r’ and a dipole at the Kelvin point. Figure 2 depicts the continuous
part of the normalized image cursent function for different distances of the dipole
and ép = 5 .

The divergence of the image current

8% e 10! [p! - a2
”, o= 1 e s _1' —— —— "
V= smgn ST (5) T o(g-)] @
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when compared with {44), shows that the condition of coutinuity

V' -1y = —jweio (64)

is satisfied. This can be pictured so that the charges of the static image make
up the current of the first-order image through sinusoidal mation along the image
line.

Image cusrent of radial dipole

~ d/a=2

] Rr— \v\
'\.‘—‘\*
\ d/a=1.5

0.3 \ . . —

Y] R— \ ; S ST S

"~ =
_ \ d/a
\
0.5 T NI HEUTS IRSNY R J
\‘.“\
0.6 HE— H i 4
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

za

Figure 2. Normaslized functions characterizing the image current lne cor-
responding to a radial dipole at different distances d for ¢, = §.
The deltz function at the Kelvin point is not shown.
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Transverse dipole

In the case of pg perpendicular to r' we have pg. Vg(r/,r") = 0, and the
last iwo integrals in (58) form the expression for the vector poteatial:

1
Al(r) _]w[l /(po ) ydf’,+JUﬂ / PO vIDdrII

a

2
¢ =ﬂo/'z%ld"” +pu /]‘”“{ﬁ; 2 gP0 vllD dr". (65)
’ 0

For the last step we have invoked the property
A S A
2 Ve = 7Y 5oy
Comparing (65) with (59) and (61) shows us that the image can be written as a

combination of a transverse current strip plus a longitudinal bifilar line cuxreat.
The firs* integral of (65) corresponds to a transverse cwrrent which has the form

(66)

]
Ya(r") = jwpg = g(r', ). (67)
The second term corresponds to a bifilar current along the direction ' with the
moment dyadic
- ("")2 1o
[AL)sy = =jwry === pog(r'sr"). (68)
Thus, a transverse current element corresponds to an image which has both exial

and transverse components. Combining these leads finally to the image current
density

" , ! I 2T, . ,,.11)2 ' Nep I
Ii(r )=pr0 -,-g(r m)8(p") = jwip=g=g(r',r")po - V"6(p")

-Jw g(r rV" x [po x ur8(p")) . (69)

Let us again check the continuity coandition. The divergence of the image
current density (69) can be written as

. . .
VT = jwy £, ")V [pod(p )] = jw V" pip = —jwig.  (70)

The last term refers to the image charge density corresponding to'the image dipole
deasity given in the static case (45). It is seen that also in the transverse dipole
case the first-order image current and the zeroth-order charge satisfy the continu-
ity condition, which means that the first-order image current can be pictured as
being the zeroth-order image charge in periodic motion. Since the current cannot
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be determined from the charge, because it is not uniquely determined from its
divergence, the present analysis was needed to find the result.

The image expression for the transverse dipole (69} can also be written in the
form

ine 1
') = 9 x [0 S0 o, Yoo x k(") 4+ 7 100", (71

of which the first term can be expressed in terms of an equivalent magnetic current

[11):

- V %X Jine
Jwie

Thus, as an alternative to the expression (69), the transverse dipole py can be

seen to give rise to transverse electric and magnetic image strip currents of the
form

3 (72)

) T'”
Ly =jw— (', 7)o, (73)
k2 (")
Tniz == 22 L g0, 13m0 x . (74)

These two strip currents are seen to be at right angles to one another. Their
pormalized tunctional dependence is depicted in Fig. 3 for certain relative permit-
tivities of the sphere.

4. SUMMARY OF RESULTS

Let us summarize the first-order low-frequency image results in cartesian coordi-
nate form which is more easily applicable in further analysis. The indices showing
the order of the image are omitted in the sequel.

For a slowly oscillating current dipole on z axis, defined by

J(r) = W L§(2 - d)é( p), (75)
the iinage corresponding to the axial dipole, with u=u;, is

Gr—l a 3 02
J,‘(l‘) = —u;lL [m (E) § (z-—- ?)

(e ~1) a :d)ﬁlﬂ' (02 )
- § ¢
pelesg) s (&) "o (5-) | o (76)
while the transverse dipole, with . 4y = U, corresponds to the image current

density

(_g)“”u (9;--:) [w6(p) - zu;u-V&(p)),  (77)

er—1a
L =1L S
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or to the combination of electric and magnetic irage current densities

s =z [£23 ()75 (- %) - 5k ()0 (5 ) oo

(78)
. ] o
nitr) =(u x ot L3 (5)° () UG - 26000, (19)

Figare 3 Normalized eleciiic (a) and magnetic (b) componeats of the im-
age current corresponding to a transverse dipole at the distance
d = 1l.1a for differeut values of the relative permittivity of the
sphere, ¢.. The currents flow transverse to the z axis and each
other. The delta function at the Xelvin point is not shown.
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5. SPECIAL CASES

Let us finally study some limit cases to check the image current expressions (76)-
(79) for the dielectric sphere.

1. For ¢ — 1 the sphere vanishes. From (76)—(79) we see that ali image currents
vanish because of the factor & — 1.

2. For ¢ » 1 the diclectric sphere becomes somewhat similar to an ideally
conducting sphere for the electric field. In the present cace, for a radial dipole,
the image current (76) has the form

. a\3 w2 a a?
3= —jwwl [(E) é (: - 7) +5U (TI' z>] &p), (80)
i.e., it is composed of a poiunt dipole plus a constant line cwrrent, This simple

result does not seem to be known. For a transverse dipole, the image current
density (77) is

2
;= ijL%V x [u x w26 (p")) U(id- - 2), (81)

which consists of a constant transverse curtent plus a bifilar axial line current,
whose amplitude is proportiozal to z. From (78), (79) we have another represen-
tation in terms of an electric and a magnetic current

3; =jwwlL (-3)3 § (z - f‘;-) 5(p), (82)
Jmi = — (u X uz) éf-n. %;U (“7: - z) 5(p). (83)

This means that the other form for the image of the transverse dipole consists of
a transverse dipole plus a transverse magpetic line current with linear amplitude
dependence. Note that application of these results requires a small enough fre-
quency because in deriving the first-order theory it was assumed that /€ kor be
smail.

3. For d » o we have a dielectric sphere in homogeneous incident electric
field. Because the disiance to the Kelvin point a?/d becomes small, the image
is concentrated at the ceuter. Moments of the irnage give multipcle terms for the
image point source.

For the radial dipole we can write from (76) for the zeroth moment of the
image curvent, i.e., the moment of the image dipole at the center of the sphere,
the expression

’ ' — g Er"l 2 3
/ Ji(x)dV = ~2u.JL Lo 2( d) : (84)
1%

From (77) we find the image moment corresponding to tiie transverse dipole with
direction u:
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/.’i )V = Il r+;(2)3. (85)

Because tha lowest-order terms for the electric field incident from a radial and

a transverse dipole with the respective moments u;J/L and uwlL at the distance
d are, respeciively,

; 2uzIL ; ull
pinc _ 24z , inc _ _ 8

47r¢5¢;d3 4drepds’ (86)

these inserted in the respective expressions (84) and (85) give the same dipole
moment exXpression

L = —dmepa® T - E"‘" (87)

.+
responsible for the lowest-order scattered dxpola.r field. This coincides with the
well-known result obtained elsewhere through the Stevenson analysis [14].

There is & magnetic moment corresponding to the image of the transverse
dipole, which is obtained by integrating (79) over the sphere:

r—1 a®

O¢ +3 a4 (88)

/Jm,(r)dV =(ux u;)]wonL

This is of smaller order thaxn the eleciric momeats because of the 1/d4 dependence
on the distance. Simple expressions for higher order multipole moments can also
be readily obtained from the image cwtent expressions (76) and (77).
4. For a — oo the spherical interface becomes planar and we can compare the
result with that given by the Exact Image Theory [15] in the low-frequency case.
Taking, for example, the transverse maguetic (TM) image current due to a
vertical electric dipole above a dielectric half space from [16], we can write for the
exact image current

IFM(¢) = ~u,ILFTH(Q) (89)
with )
[ 8¢ & /e —1\"Jon(jB -
TM r r m(JBC) e -1
=-JL -
0= | De () 2P0 @)
B = koVér -_— 1, ko = Wy/loco- (91)
The variable { measures distance from the mirror image point r = —u, 5 down-

wards. Because f7M(() is an even function of B and, hence, of w, the low-
frequency approximation S — 0 starts with

er(er — 1)

™ &
FERQ) =~ IL ey

K2 CUQ) + ... (92)
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Thus, in the first order approximation, only the delta term remains and the image
current is

TM(ry o L 0oL
ITM(Q) = ILZ 6(0)- (83)

In the present sphere problem, taking the limit a ~+ oo and denoting d = A+4-a,
( = a—(z+h), where h is the height of the dipole from the interface, substituting
z=a=(h+(),snd a2/d = a—h in (76), (77) leaves us with the asymptotic
image expression

. & =1 er(er —1) _1_ .
i- 12 (£33 60+ S Lo, (99

of which the second terms vanishes and the first one coincides with the exact
lmage result above.
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